RSA-Based Dynamic Accumulator without Hashing into Primes

Victor Youdom Kemmoe Anna Lysyanskaya

Brown University

ACM CCS 2024

CA is not required to be always online

Digest has a small (constant) size

- MemWitUp $(x, w_{x,t}, \text{upmsg}_{t+1}) \rightarrow w_{x,t+1}$
- MemVerify $(A_t, x, w_{x,t}) \rightarrow Accept/Reject$

- MemWitUp $(x, w_{x,t}, \text{upmsg}_{t+1}) \rightarrow w_{x,t+1}$
- $\bullet \; \mathsf{MemVerify}(\mathsf{A}_t, \mathsf{x}, \mathsf{w}_{\mathsf{x},t}) \to \mathsf{Accept}/\mathsf{Reject}$

- NonMemWitCreate($A_t, x, \{upmsg_i\}_{i=1}^t$) $\rightarrow \bar{w}_{x,t}$
- NonMemWitUp $(x, \bar{w}_{x,t}, \mathsf{upmsg}_{t+1}) o \bar{w}_{x,t+1}$
- ullet NonMemVerify $(A_t,x,ar{w}_{x,t})
 ightarrow ext{Accept/Reject}$

Dynamic Accumulator's Properties

Definition (Compactness)

$$|\mathsf{A}| = \mathsf{poly}(\lambda), |w_{\mathsf{x},t}| = |\bar{w}_{\mathsf{x},t}| = \mathsf{poly}(\lambda,|\mathsf{x}|)$$

Dynamic Accumulator's Properties

Definition (Compactness)

$$|\mathsf{A}| = \mathsf{poly}(\lambda), |w_{\mathsf{x},t}| = |\bar{w}_{\mathsf{x},t}| = \mathsf{poly}(\lambda, |x|)$$

Definition (Correctness-Informal)

An accumulator scheme is correct if given A_t , $(x, w_{x,t})$, and $(y, \bar{w}_{y,t})$ such that $w_{x,t}$, $\bar{w}_{y,t}$ are up-to-date:

- $(x, w_{x,t})$ pass MemVerify with overwhelming probability
- $(y, \bar{w}_{v,t})$ pass NonMemVerify with overwhelming probability

Dynamic Accumulator's Properties

Definition (Compactness)

$$|\mathsf{A}| = \mathsf{poly}(\lambda), |w_{\mathsf{x},t}| = |\bar{w}_{\mathsf{x},t}| = \mathsf{poly}(\lambda, |x|)$$

Definition (Correctness-Informal)

An accumulator scheme is correct if given A_t , $(x, w_{x,t})$, and $(y, \bar{w}_{y,t})$ such that $w_{x,t}$, $\bar{w}_{y,t}$ are up-to-date:

- $(x, w_{x,t})$ pass MemVerify with overwhelming probability
- $(y, \bar{w}_{y,t})$ pass NonMemVerify with overwhelming probability

Definition (Security-Informal)

An accumulator scheme is secure if for all poly-time adversary A:

- It is hard to output a valid w_x for any $x \notin S$
- It is *hard* to output a <u>valid</u> \bar{w}_y for any $y \in \mathcal{S}$

Dynamic Accumulator in WebPKI Certificate Revocation

• Benaloh and de Mare [BdM94]: a static positive accumulator for random integers based on the hardness of computing arbitrary roots in RSA groups.

$$A \leftarrow u^{\prod_{i=1}^{n} x_i} \mod n$$
 and $w_{x_i} = A^{1/x_i}$

• Benaloh and de Mare [BdM94]: a static positive accumulator for random integers based on the hardness of computing arbitrary roots in RSA groups.

$$A \leftarrow u^{\prod_{i=1}^{n} x_i} \mod n$$
 and $w_{x_i} = A^{1/x_i}$

 Barić and Pfitzmann [BP97]: improved upon [BdM94] by changing the domain of accumulated elements to PRIMES and proving the security of their proposal under the strong RSA assumption.

• Benaloh and de Mare [BdM94]: a static positive accumulator for random integers based on the hardness of computing arbitrary roots in RSA groups.

$$A \leftarrow u^{\prod_{i=1}^{n} x_i} \mod n$$
 and $w_{x_i} = A^{1/x_i}$

- Barić and Pfitzmann [BP97]: improved upon [BdM94] by changing the domain of accumulated elements to PRIMES and proving the security of their proposal under the strong RSA assumption.
- Camenisch and Lysyanskaya [CL02] showed how to obtain a positive dynamic accumulator from [BP97], and Li, Li and Xue [LLX07] showed how to obtain a universal dynamic accumulator from [CL02].

• Benaloh and de Mare [BdM94]: a static positive accumulator for random integers based on the hardness of computing arbitrary roots in RSA groups.

$$A \leftarrow u^{\prod_{i=1}^{n} x_i} \mod n$$
 and $w_{x_i} = A^{1/x_i}$

- Barić and Pfitzmann [BP97]: improved upon [BdM94] by changing the domain of accumulated elements to PRIMES and proving the security of their proposal under the strong RSA assumption.
- Camenisch and Lysyanskaya [CLO2] showed how to obtain a positive dynamic accumulator from [BP97], and Li, Li and Xue [LLXO7] showed how to obtain a universal dynamic accumulator from [CLO2].

Working over PRIMES requires hashing to prime integers in practice:

Try
$$r \in \{0, ..., N\}$$
 until $H(x; r)$ is prime. Then, accumulate $A' \leftarrow A^{H(x; r)}$.

Based on the Prime Number Theorem, this incurs an overhead of $O(\log N)$

- Other proposals based on billinear-pairing [Ngu05, CKS09, ATSM09] that works over integers.
 - o Require public parameters whose size is linear in the number of elements to be accumulated.
 - Reducing the size of public parameters is possible at the expense of requiring a trapdoor for Add and Delete.
- Other proposals based on Merkle-tree [CW09, RY16] that works over integers.
 - Witness size is logarithmic in the number of elements accumulated.
 - Supporting non-membership and deletion is non-trivial.

Our Contributions

- RSA-based unviersal and positive dynamic accumulators defined over large odd integers.
- Security holds under the strong RSA assumption in the random oracle model.
- At least three times faster than RSA-based accumulators defined over primes for $\lambda=$ 128.
- A variant of Wesolowski's Proof of Exponentation [Wes20], called SimPoE, that does not require
 hashing to primes.
- We showed how to aggregate (non-)membership witnesses and use *SimPoE* to reduce the verification time of aggregated witnesses.

Outline

- 1 Universal Accumulator: Gen, Add, Delete, MemVerify, MemWitUp
- 2 Wesolowski's Proof of Exponentation without hashing to primes, i.e., SimPoE

- Odds $(2^{\ell-1}, 2^{\ell} 1) \stackrel{\text{def}}{=} \{2^{\ell-1} \le n \le 2^{\ell} 1 : n \mod 2 = 1\}.$
- $P^+(a)$: return the largest prime factor of a.

Based on [dB51, HT93],

Lemma (Informal)

Given a sufficiently large $\ell \in \mathbb{N}$, If $a \leftarrow s \text{ Odds}(2^{\ell-1}, 2^{\ell} - 1)$, Then

$$\mathsf{Pr}\left[P^+(\mathfrak{a})>2^{\sqrt[4]{\ell}}\right]\geq 1-O\left(2^{-\sqrt[4]{\ell}}\right)$$

- Odds $(2^{\ell-1}, 2^{\ell} 1) \stackrel{\text{def}}{=} \{2^{\ell-1} \le n \le 2^{\ell} 1 : n \mod 2 = 1\}.$
- $P^+(a)$: return the largest prime factor of a.

Based on [dB51, HT93],

Lemma (Informal)

Given a sufficiently large $\ell \in \mathbb{N}$, If $a \leftarrow s \text{ Odds}(2^{\ell-1}, 2^{\ell} - 1)$, Then

$$\mathsf{Pr}\left[\mathsf{P}^+(a)>2^{\sqrt[4]{\ell}}
ight]\geq 1-\mathsf{O}\left(2^{-\sqrt[4]{\ell}}
ight)$$

In other words, If $a \longleftrightarrow \text{Odds}(2^{\ell-1}, 2^{\ell} - 1)$, then with overwhelming probability, a has a large prime factor with $\Omega(\sqrt[4]{\ell})$ -bits

Corollary (Informal)

For $m \in \mathbb{N}$, given a sufficiently large $\ell \in \mathbb{N}$, and $a_1, a_2, \ldots, a_m \sim U\left(\text{Odds}(2^{\ell-1}, 2^{\ell} - 1)\right)$. Then,

$$\Pr\left|P^+(a_i)\mid \prod_{i\in [m]\setminus\{i\}} a_i\right| \leq m^2 O\left(2^{-\sqrt[4]{\ell}}\right) \quad \forall i\in [m]$$

Corollary (Informal)

For $m \in \mathbb{N}$, given a sufficiently large $\ell \in \mathbb{N}$, and $a_1, a_2, \ldots, a_m \sim U\left(\text{Odds}(2^{\ell-1}, 2^{\ell}-1)\right)$. Then,

$$\Pr\left[P^+(a_i) \mid \prod_{i \in [m] \setminus \{i\}} a_i\right] \leq m^2 O\left(2^{-\sqrt[4]{\ell}}\right) \quad \forall i \in [m]$$

In other words, If you select $a_1, \ldots, a_m \in \text{Odds}(2^{\ell-1}, 2^{\ell} - 1)$ uniformly at random, then the probability that $a_i \mid \prod_{j=1, j \neq i}^m a_j$ is negligible

$$H: \{0,1\}^* \to \text{Odds}(2^{\ell-1},2^{\ell}-1)$$

$$\ell = \mathsf{poly}(\lambda)$$
, s.t. for all $x \in \{0,1\}^*$, $\mathbf{P}^+(\mathbf{H}(\mathbf{x})) > \mathbf{2}^{\sqrt[4]{\ell}}$ with overwhelming probability.

$$H: \{0,1\}^* \to \text{Odds}(2^{\ell-1}, 2^{\ell} - 1)$$

 $\ell = \text{poly}(\lambda)$, s.t. for all $x \in \{0,1\}^*$, $\mathbf{P}^+(\mathbf{H}(\mathbf{x})) > \mathbf{2}^{\sqrt[4]{\ell}}$ with overwhelming probability.

- Gen(1 $^{\lambda}, \perp$):
 - 1 Return pp = (n, u), sk = (p-1)(q-1), and $A_0 \leftarrow u \in QR_n$.
- Add(pp, A, x):
 - 1 Parse pp as (n, u).
 - 2 Compute $A' \leftarrow A^{H(x)} \mod n$.
 - 3 Let s = (1), $w_x = (A, s)$ and upmsg = (add, H(x), 1, A, A').
 - 4 Return A', w_x , and upmsg.

- Delete(pp, sk, A, x, w_x):
 - 1 Parse pp as (n, u)
 - 2 Compute $\gamma \leftarrow 1/H(x) \mod sk$, and let $\delta = 1$.
 - **3** Compute $A' \leftarrow A^{\gamma} \mod n$.
 - 4 Let upmsg = (del, H(x), δ , A, A').
 - \bigcirc Return A', and upmsg.

- Delete(pp, sk, A, x, w_x):
 - 1 Parse pp as (n, u)
 - 2 Compute $\gamma \leftarrow 1/H(x)$ mod sk, and let $\delta = 1$.
 - **3** Compute $A' \leftarrow A^{\gamma} \mod n$.
 - 4 Let upmsg = (del, H(x), δ , A, A').
 - \bigcirc Return A', and upmsg.

Note: We can use w_x to avoid using sk

How to update membership witnesses

We recall Camenisch-Lysyanskaya [CLO2] membership update algorithm.

- MemWitUp(pp, x, w_x , upmsg):
 - 1 Parse pp as (n, u), w_x as (w, s), and upmsg as $(op, H(y), \delta, A, A')$.
 - 2 If op = add, // After Add, $A' = A^{H(y)}$
 - compute $w' \leftarrow w^{H(y)} \mod n$, and let $w'_x = (w', \mathbf{s})$.

We recall Camenisch-Lysyanskaya [CLO2] membership update algorithm.

- MemWitUp(pp, x, w_x , upmsg):
 - 1 Parse pp as (n, u), w_x as (w, s), and upmsg as $(op, H(y), \delta, A, A')$.
 - 2 If op = add,
 - compute $w' \leftarrow w^{H(y)} \mod n$, and let $w'_x = (w', \mathbf{s})$.
 - 3 Else if op = del, do: // After Delete, $A' = A^{1/H(y)}$
 - 1 Compute $a, b \in \mathbb{Z}$ such that $aH(x) + bH(y) = \gcd(H(x), H(y))$.
 - 2 Compute $w' \leftarrow (A')^a w^b \mod n$.

We recall Camenisch-Lysyanskaya [CLO2] membership update algorithm.

- MemWitUp(pp, x, w_x , upmsg):
 - 1 Parse pp as (n, u), w_x as (w, s), and upmsg as $(op, H(y), \delta, A, A')$.
 - 2 If op = add,
 - compute $w' \leftarrow w^{H(y)} \mod n$, and let $w'_x = (w', s)$.
 - 3 Else if op = del, do: // After Delete, $A' = A^{1/H(y)}$
 - **1** Compute $a, b \in \mathbb{Z}$ such that $aH(x) + bH(y) = \gcd(H(x), H(y))$.
 - **2** Compute $w' \leftarrow (A')^a w^b \mod n$.

Correctness issue

$$(\underbrace{w'})^{H(x)} = ((A')^a w^b)^{H(x)} = ((A')^a w^b)^{H(x)H(y)(1/H(y))} = (A^{1/H(y)})^{\gcd(H(x),H(y))} = (\underbrace{A'})^{\gcd(H(x),H(y))}$$

We recall Camenisch-Lysyanskaya [CLO2] membership update algorithm.

- MemWitUp(pp, x, w_x , upmsg):
 - 1 Parse pp as (n, u), w_x as (w, s), and upmsg as $(op, H(y), \delta, A, A')$.
 - 2 If op = add,
 - compute $w' \leftarrow w^{H(y)} \mod n$, and let $w'_x = (w', \mathbf{s})$.
 - 3 Else if op = del, do: // After Delete, $A' = A^{1/H(y)}$
 - 1 Compute $a, b \in \mathbb{Z}$ such that $aH(x) + bH(y) = \gcd(H(x), H(y))$.
 - **2** Compute $w' \leftarrow (A')^a w^b \mod n$.

Correctness issue

$$(\underbrace{w')^{H(x)}}_{} = ((A')^a w^b)^{H(x)} = ((A')^a w^b)^{H(x)H(y)(1/H(y))} = (A^{1/H(y)})^{\gcd(H(x),H(y))} = (A')^{\gcd(H(x),H(y))}$$

Fixing the issue

Observe that $(w')^{H(x)/\gcd(H(x),H(y))} = A'$. What if we consider $\frac{H(x)}{\gcd(H(x),H(y))}$ as our accumulated element?

We recall Camenisch-Lysyanskaya [CLO2] membership update algorithm.

- MemWitUp(pp, x, w_x , upmsg):
 - 1 Parse pp as (n, u), w_x as (w, s), and upmsg as $(op, H(y), \delta, A, A')$.
 - 2 If op = add,
 - compute $w' \leftarrow w^{H(y)} \mod n$, and let $w'_x = (w', s)$.
 - 3 Else if op = del, do: // After Delete, $A' = A^{1/H(y)}$
 - 1 Compute $a, b \in \mathbb{Z}$ such that $aH(x) + bH(y) = \gcd(H(x), H(y))$.
 - 2 Compute $w' \leftarrow (A')^a w^b \mod n$.

Correctness issue

$$(\underbrace{w')^{H(x)}}_{} = ((A')^a w^b)^{H(x)} = ((A')^a w^b)^{H(x)H(y)(1/H(y))} = (A^{1/H(y)})^{\gcd(H(x),H(y))} = (\underbrace{A')^{\gcd(H(x),H(y))}}_{}$$

Fixing the issue

Observe that $(w')^{H(x)/\gcd(H(x),H(y))} = A'$. What if we consider $\frac{H(x)}{\gcd(H(x),H(y))}$ as our accumulated element?

Note that $P^+(H(x)) = P^+(\frac{H(x)}{\gcd(H(x),H(y))})$.

We have x with witness $w_x = (w, s)$. Assume s = ()

• y_1 was deleted Compute $a_1, b_1 \in \mathbb{Z}$ such that $a_1H(x) + b_1H(y_1) = \gcd(H(x), H(y_1))$ Compute $\mathbf{w}' \leftarrow (A')^{a_1}\mathbf{w}^{b_1} \mod n$, and $\mathbf{s}' \leftarrow \mathbf{s} \| (\gcd(H(x), H(y_1)))$

We have x with witness $w_x = (w, s)$. Assume s = ()

• y_1 was deleted Compute $a_1, b_1 \in \mathbb{Z}$ such that $a_1H(x) + b_1H(y_1) = \gcd(H(x), H(y_1))$ Compute $\mathbf{w}' \leftarrow (\mathsf{A}')^{a_1}\mathbf{w}^{b_1} \mod n$, and $\mathbf{s}' \leftarrow \mathbf{s} \| (\gcd(H(x), H(y_1)))$ To verify, parse \mathbf{s}' as $\gcd(H(x), H(y_1))$, compute $\mathbf{x} \leftarrow \frac{H(x)}{\gcd(H(x), H(y_1))}$. Finally, check $(\mathbf{w}')^{\mathbf{x}} \stackrel{?}{=} \mathsf{A}'$

We have x with witness $w_x = (w, s)$. Assume s = ()

• y_1 was deleted Compute $a_1, b_1 \in \mathbb{Z}$ such that $a_1H(x) + b_1H(y_1) = \gcd(H(x), H(y_1))$ Compute $\mathbf{w}' \leftarrow (\mathsf{A}')^{a_1}\mathbf{w}^{b_1} \mod n$, and $\mathbf{s}' \leftarrow \mathbf{s} \| (\gcd(H(x), H(y_1)))$ To verify, parse \mathbf{s}' as $\gcd(H(x), H(y_1))$, compute $\mathbf{x} \leftarrow \frac{H(x)}{\gcd(H(x), H(y_1))}$. Finally, check $(\mathbf{w}')^{\mathbf{x}} \stackrel{?}{=} \mathsf{A}'$

• y_2 was deleted Compute $a_2, b_2 \in \mathbb{Z}$ such that $a_2\mathbf{x} + b_2H(y_1) = \gcd(\mathbf{x}, H(y_2))$ Compute $\mathbf{w}'' \leftarrow (A'')^{a_2}\mathbf{w}^{b_2} \mod n$, and $\mathbf{s}'' \leftarrow \mathbf{s}' \| (\gcd(\mathbf{x}, H(y_2)))$

We have x with witness $w_x = (w, s)$. Assume s = ()

• y_1 was deleted Compute $a_1, b_1 \in \mathbb{Z}$ such that $a_1H(x) + b_1H(y_1) = \gcd(H(x), H(y_1))$ Compute $\mathbf{w}' \leftarrow (A')^{a_1}\mathbf{w}^{b_1} \mod n$, and $\mathbf{s}' \leftarrow \mathbf{s} \| (\gcd(H(x), H(y_1)))$ To verify, parse \mathbf{s}' as $\gcd(H(x), H(y_1))$, compute $\mathbf{x} \leftarrow \frac{H(x)}{\gcd(H(x), H(y_1))}$. Finally, check $(\mathbf{w}')^{\mathbf{x}} \stackrel{?}{=} A'$

• y_2 was deleted Compute $a_2, b_2 \in \mathbb{Z}$ such that $a_2\mathbf{x} + b_2H(y_1) = \gcd(\mathbf{x}, H(y_2))$ Compute $\mathbf{w}'' \leftarrow (A'')^{a_2}\mathbf{w}^{b_2} \mod n$, and $\mathbf{s}'' \leftarrow \mathbf{s}' \| (\gcd(\mathbf{x}, H(y_2)))$ // Note: $P^+(H(x)) = P^+(\mathbf{x})$

New Membership update algorithm:

- MemWitUp(pp, x, w_x , upmsg):
 - 1 Parse pp as (n, u), w_x as (w, s), and upmsg as $(op, H(y), \delta, A, A')$.
 - 2 If op = add, compute $w' \leftarrow w^{H(y)} \mod n$, and let $w'_x = (w', \mathbf{s})$.
 - 3 Else if op = del, do:
 - 1 Compute $\mathbf{x} \leftarrow H(\mathbf{x})/\prod_{i=1}^{|\mathbf{s}|} \mathbf{s}[i]$.
 - 2 Compute $a, b \in \mathbb{Z}$ such that $a\mathbf{x} + bH(y) = \gcd(\mathbf{x}, H(y))$.
 - 3 Compute $w' \leftarrow (A')^a w^b \mod n$.
 - 4 If $gcd(\mathbf{x}, H(y)) \neq 1$, let $\mathbf{s}' \leftarrow \mathbf{s} || (gcd(\mathbf{x}, H(y)))$. Otherwise, let $\mathbf{s}' \leftarrow \mathbf{s}$.
 - **5** Let $w'_{x} = (w', s')$.
 - 4 Return w'_x .

New Membership update algorithm:

- MemWitUp(pp, x, w_x , upmsg):
 - 1 Parse pp as (n, u), w_x as (w, s), and upmsg as $(op, H(y), \delta, A, A')$.
 - 2 If op = add, compute $\mathbf{w}' \leftarrow \mathbf{w}^{H(y)} \mod n$, and let $w_x' = (\mathbf{w}', \mathbf{s})$.
 - 3 Else if op = del, do:
 - 1 Compute $\mathbf{x} \leftarrow H(x)/\prod_{i=1}^{|\mathbf{s}|} \mathbf{s}[i]$.
 - 2 Compute $a, b \in \mathbb{Z}$ such that $a\mathbf{x} + bH(y) = \gcd(\mathbf{x}, H(y))$.
 - 3 Compute $w' \leftarrow (A')^a w^b \mod n$.
 - 4 If $gcd(\mathbf{x}, H(y)) \neq 1$, let $\mathbf{s}' \leftarrow \mathbf{s} || (gcd(\mathbf{x}, H(y)))$. Otherwise, let $\mathbf{s}' \leftarrow \mathbf{s}$.
 - 4 Return w'_x .

s is a tuple that contains **small/smooth** factors of H(x) and $|\mathbf{s}| \leq \ell$, where ℓ is the output length of H(x).

$$//P^+(H(x)) > 2^{\sqrt[4]{\ell}}$$
 with overwhelming probability.

- MemVerify(pp, A, x, w_x):
 - 1 Parse pp as (n, u), and w_x as (w, s).
 - 2 For $i \in [|\mathbf{s}|]$, if $\mathbf{s}[i] > 2^{\sqrt[4]{\ell}}$, return 0.
 - 3 Compute $\mathbf{x} \leftarrow H(x)/\prod_{i=1}^{|\mathbf{s}|} \mathbf{s}[i]$.
 - 4 If $w^{\mathbf{x}} \equiv A \mod n$ return 1. Otherwise, return 0.

Line 2 ensures that
$$P^+(H(x)) = P^+(\mathbf{x})$$
.

Definition (Correctness-Informal)

An accumulator scheme is correct if given A_t , $(x, w_{x,t})$, and $(y, \bar{w}_{y,t})$ such that $w_{x,t}$, $\bar{w}_{y,t}$ are up-to-date:

- $(x, w_{x,t})$ pass MemVerify with overwhelming probability
- $(y, \bar{w}_{y,t})$ pass NonMemVerify with overwhelming probability

Definition (Security-Informal)

An accumulator scheme is secure if for all poly-time adversary A:

- It is hard to output a valid w_x for any $x \notin S$
- It is hard to output a <u>valid</u> \bar{w}_y for any $y \in \mathcal{S}$

Definition (Correctness-Informal)

An accumulator scheme is correct if given A_t , $(x, w_{x,t})$, and $(y, \bar{w}_{y,t})$ such that $w_{x,t}$, $\bar{w}_{y,t}$ are up-to-date:

- $(x, w_{x,t})$ pass MemVerify with overwhelming probability \checkmark
- $(y, \bar{w}_{y,t})$ pass NonMemVerify with overwhelming probability

Definition (Security-Informal)

An accumulator scheme is secure if for all poly-time adversary A:

- It is hard to output a valid w_x for any $x \notin S$
- It is hard to output a <u>valid</u> \bar{w}_y for any $y \in \mathcal{S}$

Definition (Correctness-Informal)

An accumulator scheme is correct if given A_t , $(x, w_{x,t})$, and $(y, \bar{w}_{y,t})$ such that $w_{x,t}$, $\bar{w}_{y,t}$ are up-to-date:

- $(x, w_{x,t})$ pass MemVerify with overwhelming probability \checkmark
- $(y, \bar{w}_{y,t})$ pass NonMemVerify with overwhelming probability

Definition (Security-Informal)

An accumulator scheme is secure if for all poly-time adversary A:

- It is hard to output a valid w_x for any $x \notin S_{\bigstar}$
- It is hard to output a valid \bar{w}_v for any $y \in \mathcal{S}$

Security

Definition (Strong RSA Assumption)

Given (u, n), with $u \in \mathbb{Z}_n^*$, output $(v, e) \in \mathbb{Z}_n^* \times \mathbb{Z}$ such that

$$v^e \equiv u \mod n \quad \land \quad e > 1$$

Security

Security

- **1** $H(x^*) \nmid \prod_{i=1}^m H(x_i)$ with overwhelming probability. //Corollary from $P^+(H(x)) > 2^{\sqrt[4]{\ell}}$ w.o.p
- 2 $w_{x^*} = (w, \mathbf{s})$ is valid. Therefore, all components of \mathbf{s} are $2^{\sqrt[4]{\ell}}$ -smooth.

Security

- $H(x^*) \nmid \prod_{i=1}^m H(x_i)$ with overwhelming probability. //Corollary from $P^+(H(x)) > 2^{\sqrt[4]{\ell}}$ w.o.p
- 2 $w_{x^*} = (w, \mathbf{s})$ is valid. Therefore, all components of \mathbf{s} are $2^{\sqrt[4]{\ell}}$ -smooth.

Let
$$\mathbf{x}^* \leftarrow \frac{H(\mathbf{x}^*)}{\prod_{i=1}^m \mathbf{s}[i]} \cdot P^+(\mathbf{x}^*) = P^+(H(\mathbf{x}^*))$$
, so $\mathbf{x}^* \nmid \prod_{i=1}^m H(\mathbf{x}_i)$.

Security

- **1** $H(x^*) \nmid \prod_{i=1}^m H(x_i)$ with overwhelming probability. //Corollary from $P^+(H(x)) > 2^{\sqrt[4]{\ell}}$ w.o.p
- 2 $w_{x^*} = (w, \mathbf{s})$ is valid. Therefore, all components of \mathbf{s} are $2^{\sqrt[4]{\ell}}$ -smooth.

Let
$$\mathbf{x}^* \leftarrow \frac{H(\mathbf{x}^*)}{\prod_{i=1}^m \mathbf{s}[i]}$$
. $P^+(\mathbf{x}^*) = P^+(H(\mathbf{x}^*))$, so $\mathbf{x}^* \nmid \prod_{i=1}^m H(\mathbf{x}_i)$.

Security

- **1** $H(x^*) \nmid \prod_{i=1}^m H(x_i)$ with overwhelming probability. //Corollary from $P^+(H(x)) > 2^{\sqrt[4]{\ell}}$ w.o.p
- 2 $w_{x^*} = (w, \mathbf{s})$ is valid. Therefore, all components of \mathbf{s} are $2^{\sqrt[4]{\ell}}$ -smooth.

Let
$$\mathbf{x}^* \leftarrow \frac{H(\mathbf{x}^*)}{\prod_{i=1}^m \mathbf{s}[i]}$$
. $P^+(\mathbf{x}^*) = P^+(H(\mathbf{x}^*))$, so $\mathbf{x}^* \nmid \prod_{i=1}^m H(x_i)$. Let $\theta = \prod_{i=1}^m H(x_i)$

$$\mathbf{w}^{\mathbf{x}^*} = \mathbf{A} = \mathbf{u}^{\theta} \qquad (\clubsuit)$$

Security

- $H(x^*) \nmid \prod_{i=1}^m H(x_i)$ with overwhelming probability. //Corollary from $P^+(H(x)) > 2^{\sqrt[4]{\ell}}$ w.o.p
- 2 $w_{x^*} = (w, \mathbf{s})$ is valid. Therefore, all components of \mathbf{s} are $2^{\sqrt[4]{\ell}}$ -smooth.

Let
$$\mathbf{x}^* \leftarrow \frac{H(\mathbf{x}^*)}{\prod_{i=1}^m \mathbf{s}[i]}$$
. $P^+(\mathbf{x}^*) = P^+(H(\mathbf{x}^*))$, so $\mathbf{x}^* \nmid \prod_{i=1}^m H(x_i)$. Let $\theta = \prod_{i=1}^m H(x_i)$

$$\mathbf{w}^{\mathbf{x}^*} = \mathbf{A} = \mathbf{u}^{\theta} \qquad (\clubsuit)$$

Let
$$\tilde{\mathbf{x}} \leftarrow \frac{\mathbf{x}^*}{\gcd(\mathbf{x}^*,\theta)}$$
 and $\tilde{\theta} \leftarrow \frac{\theta}{\gcd(\mathbf{x}^*,\theta)}$. Note that $\gcd(\tilde{\mathbf{x}},\tilde{\theta}) = 1$ and From equation (\clubsuit), $\mathbf{w}^{\tilde{\mathbf{x}}} = \mathbf{u}^{\tilde{\theta}}$

Security

Suppose adversary \mathcal{A} outputs $\{x_1,\ldots,x_m\}$, $A=u^{\prod_{i=1}^m H(x_i)}$, $\{x^*,w_{x^*}\}$ such that $x^*\notin\{x_1,\ldots,x_m\}$.

- **1** $H(x^*) \nmid \prod_{i=1}^m H(x_i)$ with overwhelming probability. //Corollary from $P^+(H(x)) > 2^{\sqrt[4]{\ell}}$ w.o.p
- 2 $w_{x^*} = (w, s)$ is valid. Therefore, all components of s are $2^{\sqrt[4]{\ell}}$ -smooth.

Let
$$\mathbf{x}^* \leftarrow \frac{H(\mathbf{x}^*)}{\prod_{i=1}^m \mathbf{s}[i]} \cdot P^+(\mathbf{x}^*) = P^+(H(\mathbf{x}^*)), \text{ so } \mathbf{x}^* \nmid \prod_{i=1}^m H(x_i). \text{ Let } \theta = \prod_{i=1}^m H(x_i)$$

$$\mathbf{w}^{\mathbf{x}^*} = \mathbf{A} = \mathbf{u}^{\theta} \qquad (\clubsuit)$$

Let $\tilde{\mathbf{x}} \leftarrow \frac{\mathbf{x}^*}{\gcd(\mathbf{x}^*,\theta)}$ and $\tilde{\theta} \leftarrow \frac{\theta}{\gcd(\mathbf{x}^*,\theta)}$. Note that $\gcd(\tilde{\mathbf{x}},\tilde{\theta}) = 1$ and From equation (4), $\mathbf{w}^{\tilde{\mathbf{x}}} = \mathbf{u}^{\tilde{\theta}}$ Let $a,b \in \mathbb{Z}$ s.t. $a\tilde{\mathbf{x}} + b\tilde{\theta} = 1$. By Shamir's trick,

$$(u^a w^b)^{\tilde{x}} = u^{a\tilde{x}} u^{b\tilde{\theta}} = u$$

Security

Suppose adversary \mathcal{A} outputs $\{x_1,\ldots,x_m\}$, $A=u^{\prod_{i=1}^m H(x_i)}$, $\{x^*,w_{x^*}\}$ such that $x^*\notin\{x_1,\ldots,x_m\}$.

- **1** $H(x^*) \nmid \prod_{i=1}^m H(x_i)$ with overwhelming probability. //Corollary from $P^+(H(x)) > 2^{\sqrt[4]{\ell}}$ w.o.p
- 2 $w_{x^*} = (w, s)$ is valid. Therefore, all components of s are $2^{\sqrt[4]{\ell}}$ -smooth.

Let
$$\mathbf{x}^* \leftarrow \frac{H(\mathbf{x}^*)}{\prod_{i=1}^m \mathbf{s}[i]}$$
. $P^+(\mathbf{x}^*) = P^+(H(\mathbf{x}^*))$, so $\mathbf{x}^* \nmid \prod_{i=1}^m H(x_i)$. Let $\theta = \prod_{i=1}^m H(x_i)$

$$\mathbf{w}^{\mathbf{x}^*} = \mathbf{A} = \mathbf{u}^{\theta} \qquad (\clubsuit)$$

Let $\tilde{\mathbf{x}} \leftarrow \frac{\mathbf{x}^*}{\gcd(\mathbf{x}^*, \theta)}$ and $\tilde{\theta} \leftarrow \frac{\theta}{\gcd(\mathbf{x}^*, \theta)}$. Note that $\gcd(\tilde{\mathbf{x}}, \tilde{\theta}) = 1$ and From equation (\clubsuit), $\mathbf{w}^{\tilde{\mathbf{x}}} = \mathbf{u}^{\tilde{\theta}}$ Let $a, b \in \mathbb{Z}$ s.t. $a\tilde{\mathbf{x}} + b\tilde{\theta} = 1$. By Shamir's trick,

$$(u^a w^b)^{\tilde{x}} = u^{a\tilde{x}} u^{b\tilde{\theta}} = u$$

Therefore $u^a w^b$ is an \tilde{x} -root of u

Some Experimental results

λ	H_{Prime}	H_{Prime}	H _{Odd}	H _{Odd}
	length (bit)	time (ms)	length (bit)	time (ms)
112	232	10.65	1440	0.48
128	264	13.62	1704	0.60
192	393	31.9	2896	1.07
256	521	52.31	4208	1.56

Table: H_{Prime} versus H_{Odd} .

Some Experimental results

λ	Add ^(H_{Prime},sk)	$Add^{(H_{Odd},sk)}$	$Add^{H_{Prime}}$	Add^H_Odd
	time (ms)	time (ms)	time (ms)	time (ms)
112	12.83	2.73	11.06	1.96
128	20.37	7.38	14.27	3.98
192	99.48	68.84	35.34	25.10
256	456.10	402.71	65.97	110.6

Table: Comparison of different Add algorithms. Add^(H,sk) represents the addition procedure that uses the secret key sk and H as the underlying hash function, and Add^H represents the addition procedure that is performed without sk using H as the underlying hash function.

Some Experimental results

λ	Add ^(H_{Prime},sk)	Add ^(H_{Odd},sk)	$Add^{H_{Prime}}$	$Add^{H_{Odd}}$
	time (ms)	time (ms)	time (ms)	time (ms)
112	12.83	2.73	11.06	1.96
128	20.37	7.38	14.27	3.98
192	99.48	68.84	35.34	25.10
256	456.10	402.71	65.97	110.6

Table: Comparison of different Add algorithms. Add^(H,sk) represents the addition procedure that uses the secret key sk and H as the underlying hash function, and Add^H represents the addition procedure that is performed without sk using H as the underlying hash function.

Outline

- **1 Universal Accumulator:** Gen, Add, Delete, MemVerify, MemWitUp ✓
- 2 Wesolowski's Proof of Exponentation without hashing to primes, i.e., SimPoE

Proof of Exponentation

Definition

A Proof of Exponentation (PoE) is an interactive protocol (argument) for the language

$$\mathcal{L}_{\mathsf{PoE},\mathbb{G}} = \{(v,u,e) \in \mathbb{G}^2 \times \mathbb{Z} : v^e = u\}$$

where \mathbb{G} is a group of unknown order.

Proof of Exponentation

Definition

A Proof of Exponentation (PoE) is an interactive protocol (argument) for the language

$$\mathcal{L}_{\mathsf{PoE},\mathbb{G}} = \{(v,u,e) \in \mathbb{G}^2 \times \mathbb{Z} : v^e = u\}$$

where \mathbb{G} is a group of unknown order.

We recall Wesolowski's PoE [Wes20]:

Initialization:

- \bigcirc Sample and output a group \bigcirc of unknown order.
- 2 Statement: $(v, u, e) \in \mathbb{G}^2 \times \mathbb{Z}$.

Interaction:

- 1 V samples $c \leftarrow$ \$ PRIMES(2^{λ}) and sends it to P.
- 2 P computes $\pi \leftarrow v^{\lfloor e/c \rfloor}$ and sends it to V.
- **3** V computes $r \leftarrow e \mod c$. Then, it outputs 1 if $\pi^c v^r = u$. Otherwise, it outputs 0.

Proof of Exponentation: SimPoE

Definition

A Proof of Exponentation (PoE) is an interactive protocol (argument) for the language

$$\mathcal{L}_{\mathsf{PoE},\mathbb{G}} = \{ (v, u, e) \in \mathbb{G}^2 \times \mathbb{Z} : v^e = u \}$$

where \mathbb{G} is a group of unknown order.

We present SimPoE:

Initialization:

- \bigcirc Sample and output a group \bigcirc of unknown order.
- 2 Statement: $(v, u, e) \in \mathbb{G}^2 \times \mathbb{Z}$.

Interaction:

- 1 V samples $c \leftarrow s \text{Odds}(2^{\ell-1}, 2^{\ell} 1)$ and sends it to P.
- **2** P computes $\pi \leftarrow v^{\lfloor e/c \rfloor}$ and sends it to V.
- 3 V computes $r \leftarrow e \mod c$. Then, it outputs 1 if $\pi^c v^r = u$. Otherwise, it outputs 0.

Thank You

https://ia.cr/2024/505