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Dynamic Accumulator
Syntax [DHS15, BCD+17, BKR23]

t0 t1 ti

S = ∅

S = {x1}

S = {x1, . . . , xm, y}

S = {x1, . . . , xm}

Gen(1λ, aux)

(pp, sk, At0)

Add(At0 , x1)

(At1 , wx1,t1 , upmsgt1)

Delete(Ati−1 , y, wy,tt−i)

(Ati , upmsgti
)

• MemWitUp(x, wx,t, upmsgt+1)→ wx,t+1

• MemVerify(At, x, wx,t)→ Accept/Reject

• NonMemWitCreate(At, x, {upmsgi}t
i=1)→ w̄x,t

• NonMemWitUp(x, w̄x,t, upmsgt+1)→ w̄x,t+1

• NonMemVerify(At, x, w̄x,t)→ Accept/Reject
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Dynamic Accumulator’s Properties

Definition (Compactness)
|A| = poly(λ), |wx,t| = |w̄x,t| = poly(λ, |x|)

Definition (Correctness–Informal)
An accumulator scheme is correct if given At, (x, wx,t), and (y, w̄y,t) such that wx,t, w̄y,t are up-to-date:
• (x, wx,t) pass MemVerify with overwhelming probability
• (y, w̄y,t) pass NonMemVerify with overwhelming probability

Definition (Security–Informal)
An accumulator scheme is secure if for all poly-time adversaryA:
• It is hard to output a valid wx for any x /∈ S
• It is hard to output a valid w̄y for any y ∈ S
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Dynamic Accumulator in WebPKI Certificate Revocation
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Prior Works
• Benaloh and de Mare [BdM94]: a static positive accumulator for random integers based on the

hardness of computing arbitrary roots in RSA groups.

A← u
∏n

i=1 xi mod n and wxi = A1/xi

• Barić and Pfitzmann [BP97]: improved upon [BdM94] by changing the domain of accumulated
elements to PRIMES and proving the security of their proposal under the strong RSA assumption.
• Camenisch and Lysyanskaya [CL02] showed how to obtain a positive dynamic accumulator

from [BP97], and Li, Li and Xue [LLX07] showed how to obtain a universal dynamic accumulator
from [CL02].

Working over PRIMES requires hashing to prime integers in practice:

Try r ∈ {0, . . . , N} until H(x; r) is prime. Then, accumulate A′ ← AH(x;r).

Based on the Prime Number Theorem, this incurs an overhead of O(log N)
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Prior Works

• Other proposals based on billinear-pairing [Ngu05, CKS09, ATSM09] that works over integers.
◦ Require public parameters whose size is linear in the number of elements to be accumulated.
◦ Reducing the size of public parameters is possible at the expense of requiring a trapdoor for Add and

Delete.
• Other proposals based on Merkle-tree [CW09, RY16] that works over integers.

◦ Witness size is logarithmic in the number of elements accumulated.
◦ Supporting non-membership and deletion is non-trivial.
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Our Contributions

• RSA-based unviersal and positive dynamic accumulators defined over large odd integers.
• Security holds under the strong RSA assumption in the random oracle model.
• At least three times faster than RSA-based accumulators defined over primes forλ = 128.
• A variant of Wesolowski’s Proof of Exponentation [Wes20], called SimPoE, that does not require

hashing to primes.
• We showed how to aggregate (non-)membership witnesses and use SimPoE to reduce the

verification time of aggregated witnesses.
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Outline

1 Universal Accumulator: Gen, Add, Delete, MemVerify, MemWitUp
2 Wesolowski’s Proof of Exponentation without hashing to primes, i.e., SimPoE
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Some Number Theory notions

• Odds(2ℓ−1, 2ℓ − 1) def
= {2ℓ−1 ≤ n ≤ 2ℓ − 1 : n mod 2 = 1}.

• P+(a): return the largest prime factor of a.
Based on [dB51, HT93],

Lemma (Informal)
Given a sufficiently large ℓ ∈ N, If a←$ Odds(2ℓ−1, 2ℓ − 1), Then

Pr
[

P+(a) > 2
4√
ℓ
]
≥ 1− O

(
2−

4√
ℓ
)

In other words, If a←$ Odds(2ℓ−1, 2ℓ − 1), then with overwhelming probability, a has a large prime
factor withΩ( 4

√
ℓ)-bits
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Some Number Theory notions

Corollary (Informal)

For m ∈ N, given a sufficiently large ℓ ∈ N, and a1, a2, . . . , am ∼ U
(

Odds(2ℓ−1, 2ℓ − 1)
)

. Then,

Pr

P+(ai) |
∏

j∈[m]\{i}

aj

 ≤ m2O
(

2−
4√
ℓ
)
∀i ∈ [m]

In other words, If you select a1, . . . , am ∈ Odds(2ℓ−1, 2ℓ − 1) uniformly at random, then the probability
that ai |

∏m
j=1,j̸=i aj is negligible
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Our Universal Accumulator Construction

H : {0, 1}∗ → Odds(2ℓ−1, 2ℓ − 1)

ℓ = poly(λ), s.t. for all x ∈ {0, 1}∗, P+(H(x)) > 2
4√
ℓ with overwhelming probability.

• Gen(1λ,⊥):
1 Return pp = (n, u), sk = (p− 1)(q− 1), and A0 ← u ∈ QRn.

• Add(pp, A, x):
1 Parse pp as (n, u).
2 Compute A′ ← AH(x) mod n.
3 Let s = (1), wx = (A, s) and upmsg = (add, H(x), 1, A, A′).
4 Return A′ , wx, and upmsg.
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Our Universal Accumulator Construction

• Delete(pp, sk, A, x, wx):
1 Parse pp as (n, u)
2 Compute γ ← 1/H(x) mod sk, and let δ = 1.
3 Compute A′ ← Aγ mod n.
4 Let upmsg = (del, H(x), δ,A, A′).
5 Return A′, and upmsg.

Note: We can use wx to avoid using sk
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How to update membership witnesses
We recall Camenisch-Lysyanskaya [CL02] membership update algorithm.
• MemWitUp(pp, x, wx, upmsg):

1 Parse pp as (n, u), wx as (w, s), and upmsg as (op, H(y), δ, A, A′).
2 If op = add, // After Add, A′ = AH(y)

• compute w′ ← wH(y) mod n, and let w′
x = (w′, s).

3 Else if op = del, do:
1 Compute a, b ∈ Z such that aH(x) + bH(y) = gcd(H(x), H(y)).
2 Compute w′ ← (A′)awb mod n.

Correctness issue

(w′)H(x)
:::::

= ((A′)awb)H(x) = ((A′)awb)H(x)H(y)(1/H(y)) = (A1/H(y))gcd(H(x),H(y)) = (A′)gcd(H(x),H(y))
::::::::::::

Fixing the issue

Observe that (w′)H(x)/ gcd(H(x),H(y)) = A′. What if we consider H(x)
gcd(H(x),H(y)) as our accumulated element?

Note that P+(H(x)) = P+( H(x)
gcd(H(x),H(y)) ).
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Fixing the issue

Observe that (w′)H(x)/ gcd(H(x),H(y)) = A′. What if we consider H(x)
gcd(H(x),H(y)) as our accumulated element?

Note that P+(H(x)) = P+( H(x)
gcd(H(x),H(y)) ).
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Our Universal Accumulator Construction
We have x with witness wx = (w, s). Assume s = ()

• y1 was deleted
Compute a1, b1 ∈ Z such that a1H(x) + b1H(y1) = gcd(H(x), H(y1))
Compute w′ ← (A′)a1wb1 mod n, and s′ ← s∥(gcd(H(x), H(y1)))

To verify, parse s′ as gcd(H(x), H(y1)), compute x← H(x)
gcd(H(x),H(y1))

. Finally, check

(w′)x
?
= A′

• y2 was deleted
Compute a2, b2 ∈ Z such that a2x+ b2H(y1) = gcd(x, H(y2))
Compute w′′ ← (A′′)a2wb2 mod n, and s′′ ← s′∥(gcd(x, H(y2)))

// Note: P+(H(x)) = P+(x)
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Our Universal Accumulator Construction

New Membership update algorithm:

• MemWitUp(pp, x, wx, upmsg):
1 Parse pp as (n, u), wx as (w, s), and upmsg as (op, H(y), δ, A, A′).
2 If op = add, compute w′ ← wH(y) mod n, and let w′

x = (w′, s).
3 Else if op = del, do:

1 Compute x← H(x)/
∏|s|

i=1 s[i].
2 Compute a, b ∈ Z such that ax+ bH(y) = gcd(x, H(y)).
3 Compute w′ ← (A′)awb mod n.
4 If gcd(x, H(y)) ̸= 1, let s′ ← s∥(gcd(x, H(y))). Otherwise, let s′ ← s.
5 Let w′

x = (w′, s′).
4 Return w′

x.

s is a tuple that contains small/smooth factors of H(x) and |s| ≤ ℓ, where ℓ is the output length of H.
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Our Universal Accumulator Construction

//P+(H(x)) > 2
4√
ℓ with overwhelming probability.

• MemVerify(pp, A, x, wx):
1 Parse pp as (n, u), and wx as (w, s).
2 For i ∈ [|s|], if s[i] > 2

4√
ℓ, return 0.

3 Compute x← H(x)/
∏|s|

i=1 s[i].
4 If wx ≡ A mod n return 1. Otherwise, return 0.

Line 2 ensures that P+(H(x)) = P+(x).
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Our Universal Accumulator Construction–Analysis

Definition (Correctness–Informal)
An accumulator scheme is correct if given At, (x, wx,t), and (y, w̄y,t) such that wx,t, w̄y,t are up-to-date:
• (x, wx,t) pass MemVerify with overwhelming probability

✓

• (y, w̄y,t) pass NonMemVerify with overwhelming probability

Definition (Security–Informal)
An accumulator scheme is secure if for all poly-time adversaryA:
• It is hard to output a valid wx for any x /∈ S

⋆

• It is hard to output a valid w̄y for any y ∈ S
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Our Universal Accumulator Construction–Analysis
Security

Definition (Strong RSA Assumption)
Given (u, n), with u ∈ Z∗

n , output (v, e) ∈ Z∗
n × Z such that

ve ≡ u mod n ∧ e > 1
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Our Universal Accumulator Construction–Analysis
Security

Suppose adversaryA outputs {x1, . . . , xm}, A = u
∏m

i=1 H(xi), (x∗, wx∗) such that x∗ /∈ {x1, . . . , xm}.

1 H(x∗) ∤
∏m

i=1 H(xi)with overwhelming probability. //Corollary from P+(H(x)) > 2
4√
ℓ w.o.p

2 wx∗ = (w, s) is valid. Therefore, all components of s are 2
4√
ℓ-smooth.

Let x∗ ← H(x∗)∏m
i=1 s[i] . P+(x∗) = P+(H(x∗)), so x∗ ∤

∏m
i=1 H(xi).

Let θ =
∏m

i=1 H(xi)

wx
∗
= A = uθ (♣)

Let x̃← x∗

gcd(x∗,θ) and θ̃ ← θ
gcd(x∗,θ) . Note that gcd(x̃, θ̃) = 1 and From equation (♣), wx̃ = uθ̃

Let a, b ∈ Z s.t. ax̃+ bθ̃ = 1. By Shamir’s trick,

(uawb)x̃ = uax̃ubθ̃ = u

Therefore uawb is an x̃-root of u
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Some Experimental results

λ HPrime
length (bit)

HPrime
time (ms)

HOdd
length (bit)

HOdd
time (ms)

112 232 10.65 1440 0.48
128 264 13.62 1704 0.60
192 393 31.9 2896 1.07
256 521 52.31 4208 1.56

Table: HPrime versus HOdd.
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Some Experimental results

λ Add(HPrime,sk)

time (ms)
Add(HOdd,sk)

time (ms)
AddHPrime

time (ms)
AddHOdd

time (ms)
112 12.83 2.73 11.06 1.96
128 20.37 7.38 14.27 3.98
192 99.48 68.84 35.34 25.10
256 456.10 402.71 65.97 110.6

Table: Comparison of different Add algorithms. Add(H,sk) represents the addition procedure that uses the secret
key sk and H as the underlying hash function, and AddH represents the addition procedure that is performed
without sk using H as the underlying hash function.
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Outline

1 Universal Accumulator: Gen, Add, Delete, MemVerify, MemWitUp✓

2 Wesolowski’s Proof of Exponentation without hashing to primes, i.e., SimPoE
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Proof of Exponentation

: SimPoE

Definition
A Proof of Exponentation (PoE) is an interactive protocol (argument) for the language

LPoE,G = {(v, u, e) ∈ G2 × Z : ve = u}

whereG is a group of unknown order.

Initialization:
1 Sample and output a groupG of unknown order.
2 Statement: (v, u, e) ∈ G2 × Z.

Interaction:
1 V samples c←$ and sends it to P.
2 P computesπ ← v⌊e/c⌋ and sends it to V.
3 V computes r ← e mod c. Then, it outputs 1 ifπcvr = u. Otherwise, it outputs 0.
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A Proof of Exponentation (PoE) is an interactive protocol (argument) for the language

LPoE,G = {(v, u, e) ∈ G2 × Z : ve = u}

whereG is a group of unknown order.

We recall Wesolowski’s PoE [Wes20]:
Initialization:

1 Sample and output a groupG of unknown order.
2 Statement: (v, u, e) ∈ G2 × Z.

Interaction:
1 V samples c←$ PRIMES(2λ) and sends it to P.
2 P computesπ ← v⌊e/c⌋ and sends it to V.
3 V computes r ← e mod c. Then, it outputs 1 ifπcvr = u. Otherwise, it outputs 0.
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Proof of Exponentation : SimPoE

Definition
A Proof of Exponentation (PoE) is an interactive protocol (argument) for the language

LPoE,G = {(v, u, e) ∈ G2 × Z : ve = u}

whereG is a group of unknown order.

We present SimPoE:
Initialization:

1 Sample and output a groupG of unknown order.
2 Statement: (v, u, e) ∈ G2 × Z.

Interaction:
1 V samples c←$ Odds(2ℓ−1, 2ℓ − 1) and sends it to P.
2 P computesπ ← v⌊e/c⌋ and sends it to V.
3 V computes r ← e mod c. Then, it outputs 1 ifπcvr = u. Otherwise, it outputs 0.
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Thank You
https://ia.cr/2024/505
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