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Positive Dynamic Accumulator
Syntax [BCD+17 ; DHS15 ; KL24 ]

t0 t1 ti

S = ∅

S = {x1}

S = {x1, . . . , xm, y}

S = {x1, . . . , xm}

Gen(1λ, aux)

(pp, sk,At0)

Add(At0 , x1)

(At1 , wx1,t1 , upmsgt1)

Delete(Ati−1 , y, wy,tt−i)

(Ati , upmsgti
)

• MemWitUp(x, wx,t, upmsgt+1)→ wx,t+1

• MemVerify(At, x, wx,t)→ Accept/Reject

• Compactness: |A | = poly(λ), |wx,t| = poly(λ, |x|)
• Security: Hard to produce a wx for x /∈ S
• Communication efficiency: |upmsg| = O(#Del)
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Positive Dynamic Accumulator in ACs revocation

Credential Issuance
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Now, we can revoke by removing x from A
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Prior works on Positive Dynamic Accumulators
Scheme Assumption |w| |upmsg|Add |upmsg|Del |pp|

[CL02 b; LLX07 ;
KL24 ]

Strong RSA ℓ · poly(λ) ℓ∗ ℓ poly(λ)

[BCD+17 ; KL24 ] Strong RSA ℓ · poly(λ) − ℓ poly(λ)

[Ngu05 ; ATS+09 ;
CKS09 ]

q-Strong DH poly(λ) ℓ∗ ℓ s · poly(λ)

[KB21 ; JML24 ] q-Strong DH poly(λ) − ℓ poly(λ)

[PST+13 ; YAY+18 ;
LLN+23 ]

M-SIS poly(λ) · log s poly(λ) · log s∗ poly(λ) · log s poly(λ)

[ZYH24 ] M-SIS poly(λ) poly(λ)∗ poly(λ) poly(λ) · s log s

[CP23 ] M-SIS ℓ · poly(λ) ℓ∗ ℓ ℓ · poly(λ)

[CP23 ]+ [WW23 ] ℓ-Succinct M-SIS poly(λ) ℓ∗ ℓ ℓ2 · poly(λ)

Our work
M-SIS ℓ · poly(λ) − ℓ ℓ · poly(λ)

ℓ-Succinct M-SIS poly(λ) − ℓ ℓ2 · poly(λ)

• ℓ: Input’s bit length • ∗: |upmsg| = 0 for a fix set in pre-processing • s: Size of the set
4 / 18
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Digital Signature

LetΣ = (Gen, Sign, Verify) be a digital signature
• Gen(1λ)→ (pk, sk)

• Sign(sk, m)→ σ

• Verify(pk, m, σ)→ 1/0

Security
It should be hard for an adversary to generate (m∗, σ∗) given pk and {(mi, σi)}where m∗ ̸= mi for all i.

5 / 18



Positive Dynamic Accumulator from Digital Signature

LetΣ = (Gen, Sign, Verify) be a digital signature. In addition, supposeΣ supports the following
operations:
• UpdatePK(pk, sk, m̄)→ (pk′, upmsg)
• UpdateSig(m, σm, upmsg)→ σ′

m

Desiderata
• Verify(pk′, m, σ′

m) = 1 with overwhelming probability for any m ̸= m̄
• Verify(pk′, m̄, σ′

m̄) = 0 with overwhelming probability∗

UpdatePK allows to revoke signatures on messages.
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Positive Dynamic Accumulator from Digital Signature

GivenΣ = (Gen, Sign, UpdatePK, UpdateSig, Verify)we construct a positive dynamic accumulator as
follows:

• Add(pk, sk, x):
1 Computeσx ← Σ.Sign(pp, sk, x).
2 Returnσx as wx

• Delete(pk, sk, y):
1 Compute

(pk′, upmsg)← Σ.UpdatePK(pk, sk, y).
2 Return (pk′, upmsg)

• MemWitUp(x, wx, upmsg):
1 Parse wx asσx.
2 Computeσ′

x ← Σ.UpdateSig(x, σx, upmsg).
3 Returnσ′

x as w′
x.

• MemVerify(pk, x, wx):
1 Parse wx asσx.
2 ReturnΣ.Verify(pk, x, σx).

This construction is communication efficient, i.e., |upmsg| = O(#Del).
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Gadget Matrix
[MP12 ]

Let Rq ⊇ Zq be a ring such that Rm
q admits an ℓ∞-norm

G =


1, 2, 4, . . . , 2k−1

1, 2, 4, . . . , 2k−1

. . .
1, 2, 4, . . . , 2k−1

 ∈ Rn×nk
q

• k = ⌈log q⌉.
• There exists a decomposition function G−1 : Rn

q → Rnk
q such that for any u ∈ Rn

q, we have
G · G−1(u) = u and ∥G−1(u)∥∞ = 1
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Homomorphic Operations on Matrices
[GSW13 ; BGG+14 ; CP23 ]

For any ℓ ∈ N, letF = {fi : {0, 1}ℓ → {0, 1}}i∈N be a family of Boolean circuits. Then, there exist
efficient algorithm EvalF and EvalFX such that for any B ∈ Rn×ℓm

q , f ∈ F , and x ∈ {0, 1}ℓ:
• EvalF(f , B)→ Bf

• EvalFX(f , B, x)→ Hf ,x with ∥Hf ,x∥∞ = 1

s.t. (B− x⊗ G) ·Hf ,x = Bf − f (x) · G

FIndicator : {1y : {0, 1}ℓ → {0, 1}}, where1y(x) =

{
1 if x = y
0 otherwise

9 / 18



Homomorphic Operations on Matrices
[GSW13 ; BGG+14 ; CP23 ]

For any ℓ ∈ N, letF = {fi : {0, 1}ℓ → {0, 1}}i∈N be a family of Boolean circuits. Then, there exist
efficient algorithm EvalF and EvalFX such that for any B ∈ Rn×ℓm

q , f ∈ F , and x ∈ {0, 1}ℓ:
• EvalF(f , B)→ Bf

• EvalFX(f , B, x)→ Hf ,x with ∥Hf ,x∥∞ = 1

s.t. (B− x⊗ G) ·Hf ,x = Bf − f (x) · G

FIndicator : {1y : {0, 1}ℓ → {0, 1}}, where1y(x) =

{
1 if x = y
0 otherwise

9 / 18



Homomorphic Operations on Matrices
[GSW13 ; BGG+14 ; CP23 ]

For any ℓ ∈ N, letF = {fi : {0, 1}ℓ → {0, 1}}i∈N be a family of Boolean circuits. Then, there exist
efficient algorithm EvalF and EvalFX such that for any B ∈ Rn×ℓm

q , f ∈ F , and x ∈ {0, 1}ℓ:
• EvalF(f , B)→ Bf

• EvalFX(f , B, x)→ Hf ,x with ∥Hf ,x∥∞ = 1

s.t. (B− x⊗ G) ·Hf ,x = Bf − f (x) · G

FIndicator : {1y : {0, 1}ℓ → {0, 1}}, where1y(x) =

{
1 if x = y
0 otherwise

9 / 18



Our Construction
Communication efficient accumulator

pp = (A ∈ Rn×m̄
q , B ∈ Rn×ℓm

q ), sk = TA, A0 ←$ Rn×m
q

sk allows to compute a low-norm matrix V← SamplePresk([A | B̄], U) s.t. [A | B̄] · V = U for any B̄.

• Add(pp, sk,A , x):
1 Sample

Sx ← SamplePresk([A | B−x⊗G],A )
2 Return Sx as wx

Agrawal-Boneh-Boyen [ABB10 ] signature

• Delete(pp,A , y):
1 Compute B1y ← EvalF(1y, B)
2 Compute A ′ ← A + B1y

3 Return (A ′, upmsg = {y})

• MemWitUp(pp, x, wx, upmsg = {y}):
1 Compute H1y,B,x ← EvalFX(1y, B, x)

2 Compute w′
x ← wx +

[
0

H1y,B,x

]
3 Return w′

x

• MemVerify(pp,A , x, wx):
1 Check if [A | B− x⊗ G] · wx = A and
∥wx∥∞ is small

10 / 18
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Our Construction
Communication efficient accumulator – Correctness

Let x ∈ {0, 1}ℓ with an updated witness w′
x that was generated after deleting y ̸= x ∈ {0, 1}ℓ.

We have A ′ = A + B1y .

• w′
x = wx +

[
0

H1y,B,x

]
, where wx = Sx ← SamplePresk([A | B− x⊗ G],A )

• Therefore,

[A | B− x⊗ G]
(

Sx +

[
0

H1y,B,x

])
= A + (B− x⊗ G) · H1y,B,x

= A + B1y − 1y(x)G
= A ′ (Since1y(x) = 0)

• ∥w′
x∥∞ = ∥wx∥∞ +

∥∥H1y,B,x
∥∥
∞ = ∥wx∥∞ + 1

By setting the noise budget accordingly, we can support poly deletions.
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Our Construction
Communication efficient accumulator – Instantiation

Scheme q #Add #Del |wx| |upmsg|Add |upmsg|Del |A | |pp|

[CP23 ] (M-SIS) ≈ 290 232 232 12MB 4 B 4 B 45KB 14.2MB

[CP23 ]+[WW23 ]
(ℓ-Succinct M-SIS)

≈ 2150 232 232 5.5MB 4 B 4 B 75KB 77.3MB

Our work (M-SIS) ≈ 2100 − 232 14.72MB − 4 B 50KB 16.7MB

Our work
(ℓ-Succinct M-SIS)

≈ 2162 − 232 9.33MB − 4 B 81KB 171.7MB
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Security Analysis
• Replacement-free condition: Cannot re-add x after it was deleted.

ti ti+1 ti+2

Add(Ati-1 , x) Delete(Ati , x) Add(Ati+1 , x)

(Ati , wx) (Ati+1 , upmsg) (Ati+2 , ŵx)

By using EvalFX, we can compute w̃x from wx such that [A | B− x⊗ G] · w̃x = Ati+2 − G.
And [A | B− x⊗ G] · ŵx = Ati+2 .

[A | B− x⊗ G] · (ŵx − w̃x) = G

Note: ŵx − w̃x can be used as a G-trapdoor to forge membership witnesses for x.

Theorem
If the replacement-free condition holds and the (module) Short Integer Solution problem is hard, then our
construction is a selectively secure communication efficient positive dynamic∗ accumulator.
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By using EvalFX, we can compute w̃x from wx such that [A | B− x⊗ G] · w̃x = Ati+2 − G.
And [A | B− x⊗ G] · ŵx = Ati+2 .
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Security Analysis
Short Integer Solution (n, m, β)
Given Ā←$ Rn×m

q , find v ̸= 0 such that ∥v∥ ≤ β and
• Āv = 0, for the homogeneous case.
• Āv = t, for the inhomogeneous case w.r.t target t ̸= 0.

Suppose a selective adversaryA outputs a forgery (x∗, wx∗)

Case 1: x∗ was never added to the accumulator.
Then [A | B− x∗ ⊗ G] · wx∗ = A .
Since wx∗ is short, it is an inhomogeneous
solution for [A | B− x∗ ⊗ G].

Case 2: x∗ was added then remove from the
accumulator.
Then there exists w̃x∗ ̸= wx∗ such that
[A | B− x∗ ⊗ G] · w̃x∗ = A − G. Therefore,
[A | B− x∗ ⊗ G] · (wx∗ − w̃x∗) = G.
Hence, using (wx∗ − w̃x∗)we can sample a short
v ̸= 0 and [A | B− x∗ ⊗ G]v = 0

Note: Under the replacement-free condition, these two cases are sufficient.
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Security Analysis

• The accumulator needs to be replacement-free and is only selectively secure. Is that not
undesirable?

Theorem

Positive
Accumulator

(Communication
efficient)

+
Adaptively secure
Digital signature

[BCD+17 ]
=⇒

Adaptively secure
Positive Dynamic

Accumulator

(Communication
efficient)

Note: A replacement-free selectively secure accumulator is sufficient for Anonymous Credential
Revocation.
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Replacement-free Selectively Secure Accumulator in ACs revocation

Credential Issuance

, x, wx,
pk, sk

Showing Protocol (P)

Accept / Reject

, x, wx,, A

x can be randomly sampled .

Q: Are we done ?

During the Showing Protocol, we need to prove knowl-
edge of x and wx s.t. MemVerify(A , x, wx) = 1.
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Replacement-free Selectively Secure Accumulator in ACs revocation

From Lattice-based zero-knowledge proofs [Lyu12 ; ENS20 ; LNP+21 ; LNP22 ; BS23 ], we know how to
prove knowledge of v such that

Cv = t, ∥v∥ ≤ β

For our construction, we need to prove knowledge of (x, wx) such that

[A | B− x⊗ G] ·wx = A , ∥wx∥ ≤ β′ (1)

How can we handle x?
• Compute a commitment Com(x; r) and produce a proofπCom = (w, c, z).
• From z, we can extract zx = yx + c · x such that

[cA | cB− zx ⊗ G] ·wx = c [A | B− x⊗ G] ·wx︸ ︷︷ ︸
A

+[0 | −yx ⊗ G] ·wx
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Thank You!
https://ia.cr/2025/1099

Some icons were sourced from Flaticon.com
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