
Lattice-Based Accumulator and Application to Anonymous Credential
Revocation

Victor Youdom Kemmoe Anna Lysyanskaya Ngoc Khanh Nguyen

Motivation
Anonymous Credentials [CL02 a; BBC+24]

Credential Issuance

pk, sk

Showing Protocol (P)

Accept / Reject

Q: How can we achieve fine-grained revocation for ?

1 / 18

Motivation
Anonymous Credentials [CL02 a; BBC+24]

Credential Issuance

,
pk, sk

Showing Protocol (P)

Accept / Reject

Q: How can we achieve fine-grained revocation for ?

1 / 18

Motivation
Anonymous Credentials [CL02 a; BBC+24]

Credential Issuance

,
pk, sk

Showing Protocol (P)

Accept / Reject

,

Q: How can we achieve fine-grained revocation for ?

1 / 18

Motivation
Anonymous Credentials [CL02 a; BBC+24]

Credential Issuance

,
pk, sk

Showing Protocol (P)

Accept / Reject

,

age ≥ 21 and canDrive = True

All I have learned is that
his credentials satisfy P

Q: How can we achieve fine-grained revocation for ?

1 / 18

Motivation
Anonymous Credentials [CL02 a; BBC+24]

Credential Issuance

,
pk, sk

Showing Protocol (P)

Accept / Reject

,

Q: How can we revoke ?

Q: How can we achieve fine-grained revocation for ?

1 / 18

Motivation
Anonymous Credentials [CL02 a; BBC+24]

Credential Issuance

,
pk, sk

Showing Protocol (P)

Accept / Reject

,

Q: How can we achieve fine-grained revocation for ?

1 / 18

Motivation
Anonymous Credentials [CL02 a; BBC+24]

Credential Issuance

,
pk, sk

Showing Protocol (P)

Accept / Reject

,

Q: How can we achieve fine-grained revocation for ?

1 / 18

Positive Dynamic Accumulator
Syntax [BCD+17 ; DHS15 ; KL24]

t0 t1 ti

S = ∅

S = {x1}

S = {x1, . . . , xm, y}

S = {x1, . . . , xm}

Gen(1λ, aux)

(pp, sk,At0)

Add(At0 , x1)

(At1 , wx1,t1 , upmsgt1)

Delete(Ati−1 , y, wy,tt−i)

(Ati , upmsgti
)

• MemWitUp(x, wx,t, upmsgt+1)→ wx,t+1

• MemVerify(At, x, wx,t)→ Accept/Reject

• Compactness: |A | = poly(λ), |wx,t| = poly(λ, |x|)
• Security: Hard to produce a wx for x /∈ S
• Communication efficiency: |upmsg| = O(#Del)

2 / 18

Positive Dynamic Accumulator
Syntax [BCD+17 ; DHS15 ; KL24]

t0 t1 ti

S = ∅

S = {x1}

S = {x1, . . . , xm, y}

S = {x1, . . . , xm}

Gen(1λ, aux)

(pp, sk,At0)

Add(At0 , x1)

(At1 , wx1,t1 , upmsgt1)

Delete(Ati−1 , y, wy,tt−i)

(Ati , upmsgti
)

• MemWitUp(x, wx,t, upmsgt+1)→ wx,t+1

• MemVerify(At, x, wx,t)→ Accept/Reject

• Compactness: |A | = poly(λ), |wx,t| = poly(λ, |x|)
• Security: Hard to produce a wx for x /∈ S
• Communication efficiency: |upmsg| = O(#Del)

2 / 18

Positive Dynamic Accumulator
Syntax [BCD+17 ; DHS15 ; KL24]

t0 t1 ti

S = ∅ S = {x1}

S = {x1, . . . , xm, y}

S = {x1, . . . , xm}

Gen(1λ, aux)

(pp, sk,At0)

Add(At0 , x1)

(At1 , wx1,t1 , upmsgt1)

Delete(Ati−1 , y, wy,tt−i)

(Ati , upmsgti
)

• MemWitUp(x, wx,t, upmsgt+1)→ wx,t+1

• MemVerify(At, x, wx,t)→ Accept/Reject

• Compactness: |A | = poly(λ), |wx,t| = poly(λ, |x|)
• Security: Hard to produce a wx for x /∈ S
• Communication efficiency: |upmsg| = O(#Del)

2 / 18

Positive Dynamic Accumulator
Syntax [BCD+17 ; DHS15 ; KL24]

t0 t1 ti

S = ∅ S = {x1}

S = {x1, . . . , xm, y}

S = {x1, . . . , xm}

Gen(1λ, aux)

(pp, sk,At0)

Add(At0 , x1)

(At1 , wx1,t1 , upmsgt1)

Delete(Ati−1 , y, wy,tt−i)

(Ati , upmsgti
)

• MemWitUp(x, wx,t, upmsgt+1)→ wx,t+1

• MemVerify(At, x, wx,t)→ Accept/Reject

• Compactness: |A | = poly(λ), |wx,t| = poly(λ, |x|)
• Security: Hard to produce a wx for x /∈ S
• Communication efficiency: |upmsg| = O(#Del)

2 / 18

Positive Dynamic Accumulator
Syntax [BCD+17 ; DHS15 ; KL24]

t0 t1 ti

S = ∅ S = {x1}

S = {x1, . . . , xm, y}

S = {x1, . . . , xm}

Gen(1λ, aux)

(pp, sk,At0)

Add(At0 , x1)

(At1 , wx1,t1 , upmsgt1)

Delete(Ati−1 , y, wy,tt−i)

(Ati , upmsgti
)

• MemWitUp(x, wx,t, upmsgt+1)→ wx,t+1

• MemVerify(At, x, wx,t)→ Accept/Reject

• Compactness: |A | = poly(λ), |wx,t| = poly(λ, |x|)
• Security: Hard to produce a wx for x /∈ S
• Communication efficiency: |upmsg| = O(#Del)

2 / 18

Positive Dynamic Accumulator
Syntax [BCD+17 ; DHS15 ; KL24]

t0 t1 ti

S = ∅ S = {x1}

S = {x1, . . . , xm, y}

S = {x1, . . . , xm}

Gen(1λ, aux)

(pp, sk,At0)

Add(At0 , x1)

(At1 , wx1,t1 , upmsgt1)

Delete(Ati−1 , y, wy,tt−i)

(Ati , upmsgti
)

• MemWitUp(x, wx,t, upmsgt+1)→ wx,t+1

• MemVerify(At, x, wx,t)→ Accept/Reject

• Compactness: |A | = poly(λ), |wx,t| = poly(λ, |x|)
• Security: Hard to produce a wx for x /∈ S
• Communication efficiency: |upmsg| = O(#Del)

2 / 18

Positive Dynamic Accumulator
Syntax [BCD+17 ; DHS15 ; KL24]

t0 t1 ti

S = ∅ S = {x1}

S = {x1, . . . , xm, y}

S = {x1, . . . , xm}

Gen(1λ, aux)

(pp, sk,At0)

Add(At0 , x1)

(At1 , wx1,t1 , upmsgt1)

Delete(Ati−1 , y, wy,tt−i)

(Ati , upmsgti
)

• MemWitUp(x, wx,t, upmsgt+1)→ wx,t+1

• MemVerify(At, x, wx,t)→ Accept/Reject

• Compactness: |A | = poly(λ), |wx,t| = poly(λ, |x|)
• Security: Hard to produce a wx for x /∈ S
• Communication efficiency: |upmsg| = O(#Del)

2 / 18

Positive Dynamic Accumulator
Syntax [BCD+17 ; DHS15 ; KL24]

t0 t1 ti

S = ∅ S = {x1}

S = {x1, . . . , xm, y}

S = {x1, . . . , xm}

Gen(1λ, aux)

(pp, sk,At0)

Add(At0 , x1)

(At1 , wx1,t1 , upmsgt1)

Delete(Ati−1 , y, wy,tt−i)

(Ati , upmsgti
)

• MemWitUp(x, wx,t, upmsgt+1)→ wx,t+1

• MemVerify(At, x, wx,t)→ Accept/Reject

• Compactness: |A | = poly(λ), |wx,t| = poly(λ, |x|)
• Security: Hard to produce a wx for x /∈ S
• Communication efficiency: |upmsg| = O(#Del)

2 / 18

Positive Dynamic Accumulator in ACs revocation

Credential Issuance

, x, wx,

pk, sk

Showing Protocol (P)

Accept / Reject

, A

Now, we can revoke by removing x from A

3 / 18

Positive Dynamic Accumulator in ACs revocation

Credential Issuance

, x, wx,
pk, sk

Showing Protocol (P)

Accept / Reject

, A

Now, we can revoke by removing x from A

3 / 18

Positive Dynamic Accumulator in ACs revocation

Credential Issuance

, x, wx,
pk, sk

Showing Protocol (P)

Accept / Reject

, x, wx,, A

Now, we can revoke by removing x from A

3 / 18

Positive Dynamic Accumulator in ACs revocation
Credential Issuance

, x, wx,
pk, sk

Showing Protocol (P)

Accept / Reject

, x, wx,, A

age ≥ 21 and canDrive = True
and MemVerify(A , x, wx) = 1

Now, we can revoke by removing x from A

3 / 18

Positive Dynamic Accumulator in ACs revocation

Credential Issuance

, x, wx,
pk, sk

Showing Protocol (P)

Accept / Reject

, x, wx,, A

Now, we can revoke by removing x from A

3 / 18

Prior works on Positive Dynamic Accumulators
Scheme Assumption |w| |upmsg|Add |upmsg|Del |pp|

[CL02 b; LLX07 ;
KL24]

Strong RSA ℓ · poly(λ) ℓ∗ ℓ poly(λ)

[BCD+17 ; KL24] Strong RSA ℓ · poly(λ) − ℓ poly(λ)

[Ngu05 ; ATS+09 ;
CKS09]

q-Strong DH poly(λ) ℓ∗ ℓ s · poly(λ)

[KB21 ; JML24] q-Strong DH poly(λ) − ℓ poly(λ)

[PST+13 ; YAY+18 ;
LLN+23]

M-SIS poly(λ) · log s poly(λ) · log s∗ poly(λ) · log s poly(λ)

[ZYH24] M-SIS poly(λ) poly(λ)∗ poly(λ) poly(λ) · s log s

[CP23] M-SIS ℓ · poly(λ) ℓ∗ ℓ ℓ · poly(λ)

[CP23]+ [WW23] ℓ-Succinct M-SIS poly(λ) ℓ∗ ℓ ℓ2 · poly(λ)

Our work
M-SIS ℓ · poly(λ) − ℓ ℓ · poly(λ)

ℓ-Succinct M-SIS poly(λ) − ℓ ℓ2 · poly(λ)

• ℓ: Input’s bit length • ∗: |upmsg| = 0 for a fix set in pre-processing • s: Size of the set
4 / 18

Prior works on Positive Dynamic Accumulators
Scheme Assumption |w| |upmsg|Add |upmsg|Del |pp|

[CL02 b; LLX07 ;
KL24]

Strong RSA ℓ · poly(λ) ℓ∗ ℓ poly(λ)

[BCD+17 ; KL24] Strong RSA ℓ · poly(λ) − ℓ poly(λ)

[Ngu05 ; ATS+09 ;
CKS09]

q-Strong DH poly(λ) ℓ∗ ℓ s · poly(λ)

[KB21 ; JML24] q-Strong DH poly(λ) − ℓ poly(λ)

[PST+13 ; YAY+18 ;
LLN+23]

M-SIS poly(λ) · log s poly(λ) · log s∗ poly(λ) · log s poly(λ)

[ZYH24] M-SIS poly(λ) poly(λ)∗ poly(λ) poly(λ) · s log s

[CP23] M-SIS ℓ · poly(λ) ℓ∗ ℓ ℓ · poly(λ)

[CP23]+ [WW23] ℓ-Succinct M-SIS poly(λ) ℓ∗ ℓ ℓ2 · poly(λ)

Our work
M-SIS ℓ · poly(λ) − ℓ ℓ · poly(λ)

ℓ-Succinct M-SIS poly(λ) − ℓ ℓ2 · poly(λ)

• ℓ: Input’s bit length • ∗: |upmsg| = 0 for a fix set in pre-processing • s: Size of the set
4 / 18

Prior works on Positive Dynamic Accumulators
Scheme Assumption |w| |upmsg|Add |upmsg|Del |pp|

[CL02 b; LLX07 ;
KL24]

Strong RSA ℓ · poly(λ) ℓ∗ ℓ poly(λ)

[BCD+17 ; KL24] Strong RSA ℓ · poly(λ) − ℓ poly(λ)

[Ngu05 ; ATS+09 ;
CKS09]

q-Strong DH poly(λ) ℓ∗ ℓ s · poly(λ)

[KB21 ; JML24] q-Strong DH poly(λ) − ℓ poly(λ)

[PST+13 ; YAY+18 ;
LLN+23]

M-SIS poly(λ) · log s poly(λ) · log s∗ poly(λ) · log s poly(λ)

[ZYH24] M-SIS poly(λ) poly(λ)∗ poly(λ) poly(λ) · s log s

[CP23] M-SIS ℓ · poly(λ) ℓ∗ ℓ ℓ · poly(λ)

[CP23]+ [WW23] ℓ-Succinct M-SIS poly(λ) ℓ∗ ℓ ℓ2 · poly(λ)

Our work
M-SIS ℓ · poly(λ) − ℓ ℓ · poly(λ)

ℓ-Succinct M-SIS poly(λ) − ℓ ℓ2 · poly(λ)

• ℓ: Input’s bit length • ∗: |upmsg| = 0 for a fix set in pre-processing • s: Size of the set
4 / 18

Digital Signature

LetΣ = (Gen, Sign, Verify) be a digital signature
• Gen(1λ)→ (pk, sk)

• Sign(sk, m)→ σ

• Verify(pk, m, σ)→ 1/0

Security
It should be hard for an adversary to generate (m∗, σ∗) given pk and {(mi, σi)}where m∗ ̸= mi for all i.

5 / 18

Positive Dynamic Accumulator from Digital Signature

LetΣ = (Gen, Sign, Verify) be a digital signature. In addition, supposeΣ supports the following
operations:
• UpdatePK(pk, sk, m̄)→ (pk′, upmsg)
• UpdateSig(m, σm, upmsg)→ σ′

m

Desiderata
• Verify(pk′, m, σ′

m) = 1 with overwhelming probability for any m ̸= m̄
• Verify(pk′, m̄, σ′

m̄) = 0 with overwhelming probability∗

UpdatePK allows to revoke signatures on messages.

6 / 18

Positive Dynamic Accumulator from Digital Signature

LetΣ = (Gen, Sign, Verify) be a digital signature. In addition, supposeΣ supports the following
operations:
• UpdatePK(pk, sk, m̄)→ (pk′, upmsg)
• UpdateSig(m, σm, upmsg)→ σ′

m

Desiderata
• Verify(pk′, m, σ′

m) = 1 with overwhelming probability for any m ̸= m̄
• Verify(pk′, m̄, σ′

m̄) = 0 with overwhelming probability∗

UpdatePK allows to revoke signatures on messages.

6 / 18

Positive Dynamic Accumulator from Digital Signature

LetΣ = (Gen, Sign, Verify) be a digital signature. In addition, supposeΣ supports the following
operations:
• UpdatePK(pk, sk, m̄)→ (pk′, upmsg)
• UpdateSig(m, σm, upmsg)→ σ′

m

Desiderata
• Verify(pk′, m, σ′

m) = 1 with overwhelming probability for any m ̸= m̄
• Verify(pk′, m̄, σ′

m̄) = 0 with overwhelming probability∗

UpdatePK allows to revoke signatures on messages.

6 / 18

Positive Dynamic Accumulator from Digital Signature

GivenΣ = (Gen, Sign, UpdatePK, UpdateSig, Verify)we construct a positive dynamic accumulator as
follows:

• Add(pk, sk, x):
1 Computeσx ← Σ.Sign(pp, sk, x).
2 Returnσx as wx

• Delete(pk, sk, y):
1 Compute

(pk′, upmsg)← Σ.UpdatePK(pk, sk, y).
2 Return (pk′, upmsg)

• MemWitUp(x, wx, upmsg):
1 Parse wx asσx.
2 Computeσ′

x ← Σ.UpdateSig(x, σx, upmsg).
3 Returnσ′

x as w′
x.

• MemVerify(pk, x, wx):
1 Parse wx asσx.
2 ReturnΣ.Verify(pk, x, σx).

This construction is communication efficient, i.e., |upmsg| = O(#Del).

7 / 18

Positive Dynamic Accumulator from Digital Signature

GivenΣ = (Gen, Sign, UpdatePK, UpdateSig, Verify)we construct a positive dynamic accumulator as
follows:
• Add(pk, sk, x):

1 Computeσx ← Σ.Sign(pp, sk, x).
2 Returnσx as wx

• Delete(pk, sk, y):
1 Compute

(pk′, upmsg)← Σ.UpdatePK(pk, sk, y).
2 Return (pk′, upmsg)

• MemWitUp(x, wx, upmsg):
1 Parse wx asσx.
2 Computeσ′

x ← Σ.UpdateSig(x, σx, upmsg).
3 Returnσ′

x as w′
x.

• MemVerify(pk, x, wx):
1 Parse wx asσx.
2 ReturnΣ.Verify(pk, x, σx).

This construction is communication efficient, i.e., |upmsg| = O(#Del).

7 / 18

Positive Dynamic Accumulator from Digital Signature

GivenΣ = (Gen, Sign, UpdatePK, UpdateSig, Verify)we construct a positive dynamic accumulator as
follows:
• Add(pk, sk, x):

1 Computeσx ← Σ.Sign(pp, sk, x).
2 Returnσx as wx

• Delete(pk, sk, y):
1 Compute

(pk′, upmsg)← Σ.UpdatePK(pk, sk, y).
2 Return (pk′, upmsg)

• MemWitUp(x, wx, upmsg):
1 Parse wx asσx.
2 Computeσ′

x ← Σ.UpdateSig(x, σx, upmsg).
3 Returnσ′

x as w′
x.

• MemVerify(pk, x, wx):
1 Parse wx asσx.
2 ReturnΣ.Verify(pk, x, σx).

This construction is communication efficient, i.e., |upmsg| = O(#Del).

7 / 18

Positive Dynamic Accumulator from Digital Signature

GivenΣ = (Gen, Sign, UpdatePK, UpdateSig, Verify)we construct a positive dynamic accumulator as
follows:
• Add(pk, sk, x):

1 Computeσx ← Σ.Sign(pp, sk, x).
2 Returnσx as wx

• Delete(pk, sk, y):
1 Compute

(pk′, upmsg)← Σ.UpdatePK(pk, sk, y).
2 Return (pk′, upmsg)

• MemWitUp(x, wx, upmsg):
1 Parse wx asσx.
2 Computeσ′

x ← Σ.UpdateSig(x, σx, upmsg).
3 Returnσ′

x as w′
x.

• MemVerify(pk, x, wx):
1 Parse wx asσx.
2 ReturnΣ.Verify(pk, x, σx).

This construction is communication efficient, i.e., |upmsg| = O(#Del).

7 / 18

Positive Dynamic Accumulator from Digital Signature

GivenΣ = (Gen, Sign, UpdatePK, UpdateSig, Verify)we construct a positive dynamic accumulator as
follows:
• Add(pk, sk, x):

1 Computeσx ← Σ.Sign(pp, sk, x).
2 Returnσx as wx

• Delete(pk, sk, y):
1 Compute

(pk′, upmsg)← Σ.UpdatePK(pk, sk, y).
2 Return (pk′, upmsg)

• MemWitUp(x, wx, upmsg):
1 Parse wx asσx.
2 Computeσ′

x ← Σ.UpdateSig(x, σx, upmsg).
3 Returnσ′

x as w′
x.

• MemVerify(pk, x, wx):
1 Parse wx asσx.
2 ReturnΣ.Verify(pk, x, σx).

This construction is communication efficient, i.e., |upmsg| = O(#Del).

7 / 18

Positive Dynamic Accumulator from Digital Signature

GivenΣ = (Gen, Sign, UpdatePK, UpdateSig, Verify)we construct a positive dynamic accumulator as
follows:
• Add(pk, sk, x):

1 Computeσx ← Σ.Sign(pp, sk, x).
2 Returnσx as wx

• Delete(pk, sk, y):
1 Compute

(pk′, upmsg)← Σ.UpdatePK(pk, sk, y).
2 Return (pk′, upmsg)

• MemWitUp(x, wx, upmsg):
1 Parse wx asσx.
2 Computeσ′

x ← Σ.UpdateSig(x, σx, upmsg).
3 Returnσ′

x as w′
x.

• MemVerify(pk, x, wx):
1 Parse wx asσx.
2 ReturnΣ.Verify(pk, x, σx).

This construction is communication efficient, i.e., |upmsg| = O(#Del).

7 / 18

Gadget Matrix
[MP12]

Let Rq ⊇ Zq be a ring such that Rm
q admits an ℓ∞-norm

G =


1, 2, 4, . . . , 2k−1

1, 2, 4, . . . , 2k−1

. . .
1, 2, 4, . . . , 2k−1

 ∈ Rn×nk
q

• k = ⌈log q⌉.
• There exists a decomposition function G−1 : Rn

q → Rnk
q such that for any u ∈ Rn

q, we have
G · G−1(u) = u and ∥G−1(u)∥∞ = 1

8 / 18

Gadget Matrix
[MP12]

Let Rq ⊇ Zq be a ring such that Rm
q admits an ℓ∞-norm

G =


1, 2, 4, . . . , 2k−1

1, 2, 4, . . . , 2k−1

. . .
1, 2, 4, . . . , 2k−1

 ∈ Rn×nk
q

• k = ⌈log q⌉.
• There exists a decomposition function G−1 : Rn

q → Rnk
q such that for any u ∈ Rn

q, we have
G · G−1(u) = u and ∥G−1(u)∥∞ = 1

8 / 18

Homomorphic Operations on Matrices
[GSW13 ; BGG+14 ; CP23]

For any ℓ ∈ N, letF = {fi : {0, 1}ℓ → {0, 1}}i∈N be a family of Boolean circuits. Then, there exist
efficient algorithm EvalF and EvalFX such that for any B ∈ Rn×ℓm

q , f ∈ F , and x ∈ {0, 1}ℓ:
• EvalF(f , B)→ Bf

• EvalFX(f , B, x)→ Hf ,x with ∥Hf ,x∥∞ = 1

s.t. (B− x⊗ G) ·Hf ,x = Bf − f (x) · G

FIndicator : {1y : {0, 1}ℓ → {0, 1}}, where1y(x) =

{
1 if x = y
0 otherwise

9 / 18

Homomorphic Operations on Matrices
[GSW13 ; BGG+14 ; CP23]

For any ℓ ∈ N, letF = {fi : {0, 1}ℓ → {0, 1}}i∈N be a family of Boolean circuits. Then, there exist
efficient algorithm EvalF and EvalFX such that for any B ∈ Rn×ℓm

q , f ∈ F , and x ∈ {0, 1}ℓ:
• EvalF(f , B)→ Bf

• EvalFX(f , B, x)→ Hf ,x with ∥Hf ,x∥∞ = 1

s.t. (B− x⊗ G) ·Hf ,x = Bf − f (x) · G

FIndicator : {1y : {0, 1}ℓ → {0, 1}}, where1y(x) =

{
1 if x = y
0 otherwise

9 / 18

Homomorphic Operations on Matrices
[GSW13 ; BGG+14 ; CP23]

For any ℓ ∈ N, letF = {fi : {0, 1}ℓ → {0, 1}}i∈N be a family of Boolean circuits. Then, there exist
efficient algorithm EvalF and EvalFX such that for any B ∈ Rn×ℓm

q , f ∈ F , and x ∈ {0, 1}ℓ:
• EvalF(f , B)→ Bf

• EvalFX(f , B, x)→ Hf ,x with ∥Hf ,x∥∞ = 1

s.t. (B− x⊗ G) ·Hf ,x = Bf − f (x) · G

FIndicator : {1y : {0, 1}ℓ → {0, 1}}, where1y(x) =

{
1 if x = y
0 otherwise

9 / 18

Our Construction
Communication efficient accumulator

pp = (A ∈ Rn×m̄
q , B ∈ Rn×ℓm

q), sk = TA, A0 ←$ Rn×m
q

sk allows to compute a low-norm matrix V← SamplePresk([A | B̄], U) s.t. [A | B̄] · V = U for any B̄.

• Add(pp, sk,A , x):
1 Sample

Sx ← SamplePresk([A | B−x⊗G],A)
2 Return Sx as wx

Agrawal-Boneh-Boyen [ABB10] signature

• Delete(pp,A , y):
1 Compute B1y ← EvalF(1y, B)
2 Compute A ′ ← A + B1y

3 Return (A ′, upmsg = {y})

• MemWitUp(pp, x, wx, upmsg = {y}):
1 Compute H1y,B,x ← EvalFX(1y, B, x)

2 Compute w′
x ← wx +

[
0

H1y,B,x

]
3 Return w′

x

• MemVerify(pp,A , x, wx):
1 Check if [A | B− x⊗ G] · wx = A and
∥wx∥∞ is small

10 / 18

Our Construction
Communication efficient accumulator

pp = (A ∈ Rn×m̄
q , B ∈ Rn×ℓm

q), sk = TA, A0 ←$ Rn×m
q

sk allows to compute a low-norm matrix V← SamplePresk([A | B̄], U) s.t. [A | B̄] · V = U for any B̄.

• Add(pp, sk,A , x):
1 Sample

Sx ← SamplePresk([A | B−x⊗G],A)
2 Return Sx as wx

Agrawal-Boneh-Boyen [ABB10] signature

• Delete(pp,A , y):
1 Compute B1y ← EvalF(1y, B)
2 Compute A ′ ← A + B1y

3 Return (A ′, upmsg = {y})

• MemWitUp(pp, x, wx, upmsg = {y}):
1 Compute H1y,B,x ← EvalFX(1y, B, x)

2 Compute w′
x ← wx +

[
0

H1y,B,x

]
3 Return w′

x

• MemVerify(pp,A , x, wx):
1 Check if [A | B− x⊗ G] · wx = A and
∥wx∥∞ is small

10 / 18

Our Construction
Communication efficient accumulator

pp = (A ∈ Rn×m̄
q , B ∈ Rn×ℓm

q), sk = TA, A0 ←$ Rn×m
q

sk allows to compute a low-norm matrix V← SamplePresk([A | B̄], U) s.t. [A | B̄] · V = U for any B̄.

• Add(pp, sk,A , x):
1 Sample

Sx ← SamplePresk([A | B−x⊗G],A)
2 Return Sx as wx

Agrawal-Boneh-Boyen [ABB10] signature

• Delete(pp,A , y):
1 Compute B1y ← EvalF(1y, B)
2 Compute A ′ ← A + B1y

3 Return (A ′, upmsg = {y})

• MemWitUp(pp, x, wx, upmsg = {y}):
1 Compute H1y,B,x ← EvalFX(1y, B, x)

2 Compute w′
x ← wx +

[
0

H1y,B,x

]
3 Return w′

x

• MemVerify(pp,A , x, wx):
1 Check if [A | B− x⊗ G] · wx = A and
∥wx∥∞ is small

10 / 18

Our Construction
Communication efficient accumulator

pp = (A ∈ Rn×m̄
q , B ∈ Rn×ℓm

q), sk = TA, A0 ←$ Rn×m
q

sk allows to compute a low-norm matrix V← SamplePresk([A | B̄], U) s.t. [A | B̄] · V = U for any B̄.

• Add(pp, sk,A , x):
1 Sample

Sx ← SamplePresk([A | B−x⊗G],A)
2 Return Sx as wx

Agrawal-Boneh-Boyen [ABB10] signature

• Delete(pp,A , y):
1 Compute B1y ← EvalF(1y, B)
2 Compute A ′ ← A + B1y

3 Return (A ′, upmsg = {y})

• MemWitUp(pp, x, wx, upmsg = {y}):
1 Compute H1y,B,x ← EvalFX(1y, B, x)

2 Compute w′
x ← wx +

[
0

H1y,B,x

]
3 Return w′

x

• MemVerify(pp,A , x, wx):
1 Check if [A | B− x⊗ G] · wx = A and
∥wx∥∞ is small

10 / 18

Our Construction
Communication efficient accumulator

pp = (A ∈ Rn×m̄
q , B ∈ Rn×ℓm

q), sk = TA, A0 ←$ Rn×m
q

sk allows to compute a low-norm matrix V← SamplePresk([A | B̄], U) s.t. [A | B̄] · V = U for any B̄.

• Add(pp, sk,A , x):
1 Sample

Sx ← SamplePresk([A | B−x⊗G],A)
2 Return Sx as wx

Agrawal-Boneh-Boyen [ABB10] signature

• Delete(pp,A , y):
1 Compute B1y ← EvalF(1y, B)
2 Compute A ′ ← A + B1y

3 Return (A ′, upmsg = {y})

• MemWitUp(pp, x, wx, upmsg = {y}):
1 Compute H1y,B,x ← EvalFX(1y, B, x)

2 Compute w′
x ← wx +

[
0

H1y,B,x

]
3 Return w′

x

• MemVerify(pp,A , x, wx):
1 Check if [A | B− x⊗ G] · wx = A and
∥wx∥∞ is small

10 / 18

Our Construction
Communication efficient accumulator – Correctness

Let x ∈ {0, 1}ℓ with an updated witness w′
x that was generated after deleting y ̸= x ∈ {0, 1}ℓ.

We have A ′ = A + B1y .

• w′
x = wx +

[
0

H1y,B,x

]
, where wx = Sx ← SamplePresk([A | B− x⊗ G],A)

• Therefore,

[A | B− x⊗ G]
(

Sx +

[
0

H1y,B,x

])
= A + (B− x⊗ G) · H1y,B,x

= A + B1y − 1y(x)G
= A ′ (Since1y(x) = 0)

• ∥w′
x∥∞ = ∥wx∥∞ +

∥∥H1y,B,x
∥∥
∞ = ∥wx∥∞ + 1

By setting the noise budget accordingly, we can support poly deletions.

11 / 18

Our Construction
Communication efficient accumulator – Correctness

Let x ∈ {0, 1}ℓ with an updated witness w′
x that was generated after deleting y ̸= x ∈ {0, 1}ℓ.

We have A ′ = A + B1y .

• w′
x = wx +

[
0

H1y,B,x

]
, where wx = Sx ← SamplePresk([A | B− x⊗ G],A)

• Therefore,

[A | B− x⊗ G]
(

Sx +

[
0

H1y,B,x

])
= A + (B− x⊗ G) · H1y,B,x

= A + B1y − 1y(x)G
= A ′ (Since1y(x) = 0)

• ∥w′
x∥∞ = ∥wx∥∞ +

∥∥H1y,B,x
∥∥
∞ = ∥wx∥∞ + 1

By setting the noise budget accordingly, we can support poly deletions.

11 / 18

Our Construction
Communication efficient accumulator – Correctness

Let x ∈ {0, 1}ℓ with an updated witness w′
x that was generated after deleting y ̸= x ∈ {0, 1}ℓ.

We have A ′ = A + B1y .

• w′
x = wx +

[
0

H1y,B,x

]
, where wx = Sx ← SamplePresk([A | B− x⊗ G],A)

• Therefore,

[A | B− x⊗ G]
(

Sx +

[
0

H1y,B,x

])
= A + (B− x⊗ G) · H1y,B,x

= A + B1y − 1y(x)G
= A ′ (Since1y(x) = 0)

• ∥w′
x∥∞ = ∥wx∥∞ +

∥∥H1y,B,x
∥∥
∞ = ∥wx∥∞ + 1

By setting the noise budget accordingly, we can support poly deletions.

11 / 18

Our Construction
Communication efficient accumulator – Correctness

Let x ∈ {0, 1}ℓ with an updated witness w′
x that was generated after deleting y ̸= x ∈ {0, 1}ℓ.

We have A ′ = A + B1y .

• w′
x = wx +

[
0

H1y,B,x

]
, where wx = Sx ← SamplePresk([A | B− x⊗ G],A)

• Therefore,

[A | B− x⊗ G]
(

Sx +

[
0

H1y,B,x

])
= A + (B− x⊗ G) · H1y,B,x

= A + B1y − 1y(x)G
= A ′ (Since1y(x) = 0)

• ∥w′
x∥∞ = ∥wx∥∞ +

∥∥H1y,B,x
∥∥
∞ = ∥wx∥∞ + 1

By setting the noise budget accordingly, we can support poly deletions.

11 / 18

Our Construction
Communication efficient accumulator – Instantiation

Scheme q #Add #Del |wx| |upmsg|Add |upmsg|Del |A | |pp|

[CP23] (M-SIS) ≈ 290 232 232 12MB 4 B 4 B 45KB 14.2MB

[CP23]+[WW23]
(ℓ-Succinct M-SIS)

≈ 2150 232 232 5.5MB 4 B 4 B 75KB 77.3MB

Our work (M-SIS) ≈ 2100 − 232 14.72MB − 4 B 50KB 16.7MB

Our work
(ℓ-Succinct M-SIS)

≈ 2162 − 232 9.33MB − 4 B 81KB 171.7MB

12 / 18

Our Construction
Communication efficient accumulator – Instantiation

Scheme q #Add #Del |wx| |upmsg|Add |upmsg|Del |A | |pp|

[CP23] (M-SIS) ≈ 290 232 232 12MB 4 B 4 B 45KB 14.2MB

[CP23]+[WW23]
(ℓ-Succinct M-SIS)

≈ 2150 232 232 5.5MB 4 B 4 B 75KB 77.3MB

Our work (M-SIS) ≈ 2100 − 232 14.72MB − 4 B 50KB 16.7MB

Our work
(ℓ-Succinct M-SIS)

≈ 2162 − 232 9.33MB − 4 B 81KB 171.7MB

12 / 18

Security Analysis
• Replacement-free condition: Cannot re-add x after it was deleted.

ti ti+1 ti+2

Add(Ati-1 , x) Delete(Ati , x) Add(Ati+1 , x)

(Ati , wx) (Ati+1 , upmsg) (Ati+2 , ŵx)

By using EvalFX, we can compute w̃x from wx such that [A | B− x⊗ G] · w̃x = Ati+2 − G.
And [A | B− x⊗ G] · ŵx = Ati+2 .

[A | B− x⊗ G] · (ŵx − w̃x) = G

Note: ŵx − w̃x can be used as a G-trapdoor to forge membership witnesses for x.

Theorem
If the replacement-free condition holds and the (module) Short Integer Solution problem is hard, then our
construction is a selectively secure communication efficient positive dynamic∗ accumulator.

13 / 18

Security Analysis
• Replacement-free condition: Cannot re-add x after it was deleted.

ti ti+1 ti+2

Add(Ati-1 , x) Delete(Ati , x) Add(Ati+1 , x)

(Ati , wx) (Ati+1 , upmsg) (Ati+2 , ŵx)

By using EvalFX, we can compute w̃x from wx such that [A | B− x⊗ G] · w̃x = Ati+2 − G.
And [A | B− x⊗ G] · ŵx = Ati+2 .

[A | B− x⊗ G] · (ŵx − w̃x) = G

Note: ŵx − w̃x can be used as a G-trapdoor to forge membership witnesses for x.

Theorem
If the replacement-free condition holds and the (module) Short Integer Solution problem is hard, then our
construction is a selectively secure communication efficient positive dynamic∗ accumulator.

13 / 18

Security Analysis
• Replacement-free condition: Cannot re-add x after it was deleted.

ti ti+1 ti+2

Add(Ati-1 , x) Delete(Ati , x) Add(Ati+1 , x)

(Ati , wx) (Ati+1 , upmsg) (Ati+2 , ŵx)

By using EvalFX, we can compute w̃x from wx such that [A | B− x⊗ G] · w̃x = Ati+2 − G.
And [A | B− x⊗ G] · ŵx = Ati+2 .

[A | B− x⊗ G] · (ŵx − w̃x) = G

Note: ŵx − w̃x can be used as a G-trapdoor to forge membership witnesses for x.

Theorem
If the replacement-free condition holds and the (module) Short Integer Solution problem is hard, then our
construction is a selectively secure communication efficient positive dynamic∗ accumulator.

13 / 18

Security Analysis
• Replacement-free condition: Cannot re-add x after it was deleted.

ti ti+1 ti+2

Add(Ati-1 , x) Delete(Ati , x) Add(Ati+1 , x)

(Ati , wx) (Ati+1 , upmsg) (Ati+2 , ŵx)

By using EvalFX, we can compute w̃x from wx such that [A | B− x⊗ G] · w̃x = Ati+2 − G.
And [A | B− x⊗ G] · ŵx = Ati+2 .

[A | B− x⊗ G] · (ŵx − w̃x) = G

Note: ŵx − w̃x can be used as a G-trapdoor to forge membership witnesses for x.

Theorem
If the replacement-free condition holds and the (module) Short Integer Solution problem is hard, then our
construction is a selectively secure communication efficient positive dynamic∗ accumulator.

13 / 18

Security Analysis
• Replacement-free condition: Cannot re-add x after it was deleted.

ti ti+1 ti+2

Add(Ati-1 , x) Delete(Ati , x) Add(Ati+1 , x)

(Ati , wx) (Ati+1 , upmsg) (Ati+2 , ŵx)

By using EvalFX, we can compute w̃x from wx such that [A | B− x⊗ G] · w̃x = Ati+2 − G.
And [A | B− x⊗ G] · ŵx = Ati+2 .

[A | B− x⊗ G] · (ŵx − w̃x) = G

Note: ŵx − w̃x can be used as a G-trapdoor to forge membership witnesses for x.

Theorem
If the replacement-free condition holds and the (module) Short Integer Solution problem is hard, then our
construction is a selectively secure communication efficient positive dynamic∗ accumulator.

13 / 18

Security Analysis
Short Integer Solution (n, m, β)
Given Ā←$ Rn×m

q , find v ̸= 0 such that ∥v∥ ≤ β and
• Āv = 0, for the homogeneous case.
• Āv = t, for the inhomogeneous case w.r.t target t ̸= 0.

Suppose a selective adversaryA outputs a forgery (x∗, wx∗)

Case 1: x∗ was never added to the accumulator.
Then [A | B− x∗ ⊗ G] · wx∗ = A .
Since wx∗ is short, it is an inhomogeneous
solution for [A | B− x∗ ⊗ G].

Case 2: x∗ was added then remove from the
accumulator.
Then there exists w̃x∗ ̸= wx∗ such that
[A | B− x∗ ⊗ G] · w̃x∗ = A − G. Therefore,
[A | B− x∗ ⊗ G] · (wx∗ − w̃x∗) = G.
Hence, using (wx∗ − w̃x∗)we can sample a short
v ̸= 0 and [A | B− x∗ ⊗ G]v = 0

Note: Under the replacement-free condition, these two cases are sufficient.

14 / 18

Security Analysis
Short Integer Solution (n, m, β)
Given Ā←$ Rn×m

q , find v ̸= 0 such that ∥v∥ ≤ β and
• Āv = 0, for the homogeneous case.
• Āv = t, for the inhomogeneous case w.r.t target t ̸= 0.

Suppose a selective adversaryA outputs a forgery (x∗, wx∗)

Case 1: x∗ was never added to the accumulator.
Then [A | B− x∗ ⊗ G] · wx∗ = A .
Since wx∗ is short, it is an inhomogeneous
solution for [A | B− x∗ ⊗ G].

Case 2: x∗ was added then remove from the
accumulator.
Then there exists w̃x∗ ̸= wx∗ such that
[A | B− x∗ ⊗ G] · w̃x∗ = A − G. Therefore,
[A | B− x∗ ⊗ G] · (wx∗ − w̃x∗) = G.
Hence, using (wx∗ − w̃x∗)we can sample a short
v ̸= 0 and [A | B− x∗ ⊗ G]v = 0

Note: Under the replacement-free condition, these two cases are sufficient.

14 / 18

Security Analysis
Short Integer Solution (n, m, β)
Given Ā←$ Rn×m

q , find v ̸= 0 such that ∥v∥ ≤ β and
• Āv = 0, for the homogeneous case.
• Āv = t, for the inhomogeneous case w.r.t target t ̸= 0.

Suppose a selective adversaryA outputs a forgery (x∗, wx∗)

Case 1: x∗ was never added to the accumulator.
Then [A | B− x∗ ⊗ G] · wx∗ = A .
Since wx∗ is short, it is an inhomogeneous
solution for [A | B− x∗ ⊗ G].

Case 2: x∗ was added then remove from the
accumulator.
Then there exists w̃x∗ ̸= wx∗ such that
[A | B− x∗ ⊗ G] · w̃x∗ = A − G. Therefore,
[A | B− x∗ ⊗ G] · (wx∗ − w̃x∗) = G.
Hence, using (wx∗ − w̃x∗)we can sample a short
v ̸= 0 and [A | B− x∗ ⊗ G]v = 0

Note: Under the replacement-free condition, these two cases are sufficient.

14 / 18

Security Analysis
Short Integer Solution (n, m, β)
Given Ā←$ Rn×m

q , find v ̸= 0 such that ∥v∥ ≤ β and
• Āv = 0, for the homogeneous case.
• Āv = t, for the inhomogeneous case w.r.t target t ̸= 0.

Suppose a selective adversaryA outputs a forgery (x∗, wx∗)

Case 1: x∗ was never added to the accumulator.
Then [A | B− x∗ ⊗ G] · wx∗ = A .
Since wx∗ is short, it is an inhomogeneous
solution for [A | B− x∗ ⊗ G].

Case 2: x∗ was added then remove from the
accumulator.
Then there exists w̃x∗ ̸= wx∗ such that
[A | B− x∗ ⊗ G] · w̃x∗ = A − G.

Therefore,
[A | B− x∗ ⊗ G] · (wx∗ − w̃x∗) = G.
Hence, using (wx∗ − w̃x∗)we can sample a short
v ̸= 0 and [A | B− x∗ ⊗ G]v = 0

Note: Under the replacement-free condition, these two cases are sufficient.

14 / 18

Security Analysis
Short Integer Solution (n, m, β)
Given Ā←$ Rn×m

q , find v ̸= 0 such that ∥v∥ ≤ β and
• Āv = 0, for the homogeneous case.
• Āv = t, for the inhomogeneous case w.r.t target t ̸= 0.

Suppose a selective adversaryA outputs a forgery (x∗, wx∗)

Case 1: x∗ was never added to the accumulator.
Then [A | B− x∗ ⊗ G] · wx∗ = A .
Since wx∗ is short, it is an inhomogeneous
solution for [A | B− x∗ ⊗ G].

Case 2: x∗ was added then remove from the
accumulator.
Then there exists w̃x∗ ̸= wx∗ such that
[A | B− x∗ ⊗ G] · w̃x∗ = A − G. Therefore,
[A | B− x∗ ⊗ G] · (wx∗ − w̃x∗) = G.
Hence, using (wx∗ − w̃x∗)we can sample a short
v ̸= 0 and [A | B− x∗ ⊗ G]v = 0

Note: Under the replacement-free condition, these two cases are sufficient.

14 / 18

Security Analysis
Short Integer Solution (n, m, β)
Given Ā←$ Rn×m

q , find v ̸= 0 such that ∥v∥ ≤ β and
• Āv = 0, for the homogeneous case.
• Āv = t, for the inhomogeneous case w.r.t target t ̸= 0.

Suppose a selective adversaryA outputs a forgery (x∗, wx∗)

Case 1: x∗ was never added to the accumulator.
Then [A | B− x∗ ⊗ G] · wx∗ = A .
Since wx∗ is short, it is an inhomogeneous
solution for [A | B− x∗ ⊗ G].

Case 2: x∗ was added then remove from the
accumulator.
Then there exists w̃x∗ ̸= wx∗ such that
[A | B− x∗ ⊗ G] · w̃x∗ = A − G. Therefore,
[A | B− x∗ ⊗ G] · (wx∗ − w̃x∗) = G.
Hence, using (wx∗ − w̃x∗)we can sample a short
v ̸= 0 and [A | B− x∗ ⊗ G]v = 0

Note: Under the replacement-free condition, these two cases are sufficient.
14 / 18

Security Analysis

• The accumulator needs to be replacement-free and is only selectively secure. Is that not
undesirable?

Theorem

Positive
Accumulator

(Communication
efficient)

+
Adaptively secure
Digital signature

[BCD+17]
=⇒

Adaptively secure
Positive Dynamic

Accumulator

(Communication
efficient)

Note: A replacement-free selectively secure accumulator is sufficient for Anonymous Credential
Revocation.

15 / 18

Security Analysis

• The accumulator needs to be replacement-free and is only selectively secure. Is that not
undesirable?

Theorem
Non-adaptively
secure Positive

Dynamic
Accumulator

(Communication
efficient)

+
Adaptively secure
Digital signature

[BCD+17]
=⇒

Adaptively secure
Positive Dynamic

Accumulator

(Communication
efficient)

Note: A replacement-free selectively secure accumulator is sufficient for Anonymous Credential
Revocation.

15 / 18

Security Analysis

• The accumulator needs to be replacement-free and is only selectively secure. Is that not
undesirable?

Theorem
Non-adaptively
secure Positive

Dynamic
Accumulator

(Communication
efficient)

+
Adaptively secure
Digital signature

[BCD+17]
=⇒

Adaptively secure
Positive Dynamic

Accumulator
(Communication

efficient)

Note: A replacement-free selectively secure accumulator is sufficient for Anonymous Credential
Revocation.

15 / 18

Security Analysis

• The accumulator needs to be replacement-free and is only selectively secure. Is that not
undesirable?

Theorem
Selectively secure

Positive
Replacement-free

Accumulator
(Communication

efficient)

+
Adaptively secure
Digital signature

[BCD+17]
=⇒

Adaptively secure
Positive Dynamic

Accumulator
(Communication

efficient)

Note: A replacement-free selectively secure accumulator is sufficient for Anonymous Credential
Revocation.

15 / 18

Security Analysis

• The accumulator needs to be replacement-free and is only selectively secure. Is that not
undesirable?

Theorem
Selectively secure

Positive
Replacement-free

Accumulator
(Communication

efficient)

+
Adaptively secure
Digital signature

[BCD+17]
=⇒

Adaptively secure
Positive Dynamic

Accumulator
(Communication

efficient)

Note: A replacement-free selectively secure accumulator is sufficient for Anonymous Credential
Revocation.

15 / 18

Replacement-free Selectively Secure Accumulator in ACs revocation

Credential Issuance

, x, wx,
pk, sk

Showing Protocol (P)

Accept / Reject

, x, wx,, A

x can be randomly sampled .

Q: Are we done ?

During the Showing Protocol, we need to prove knowl-
edge of x and wx s.t. MemVerify(A , x, wx) = 1.

16 / 18

Replacement-free Selectively Secure Accumulator in ACs revocation

Credential Issuance

, x, wx,
pk, sk

Showing Protocol (P)

Accept / Reject

, x, wx,, A

x can be randomly sampled .

Q: Are we done ?

During the Showing Protocol, we need to prove knowl-
edge of x and wx s.t. MemVerify(A , x, wx) = 1.

16 / 18

Replacement-free Selectively Secure Accumulator in ACs revocation

Credential Issuance

, x, wx,
pk, sk

Showing Protocol (P)

Accept / Reject

, x, wx,, A

x can be randomly sampled .

Q: Are we done ?

During the Showing Protocol, we need to prove knowl-
edge of x and wx s.t. MemVerify(A , x, wx) = 1.

16 / 18

Replacement-free Selectively Secure Accumulator in ACs revocation

Credential Issuance

, x, wx,
pk, sk

Showing Protocol (P)

Accept / Reject

, x, wx,, A

x can be randomly sampled .

Q: Are we done ?

During the Showing Protocol, we need to prove knowl-
edge of x and wx s.t. MemVerify(A , x, wx) = 1.

16 / 18

Replacement-free Selectively Secure Accumulator in ACs revocation

From Lattice-based zero-knowledge proofs [Lyu12 ; ENS20 ; LNP+21 ; LNP22 ; BS23], we know how to
prove knowledge of v such that

Cv = t, ∥v∥ ≤ β

For our construction, we need to prove knowledge of (x, wx) such that

[A | B− x⊗ G] ·wx = A , ∥wx∥ ≤ β′ (1)

How can we handle x?
• Compute a commitment Com(x; r) and produce a proofπCom = (w, c, z).
• From z, we can extract zx = yx + c · x such that

[cA | cB− zx ⊗ G] ·wx = c [A | B− x⊗ G] ·wx︸ ︷︷ ︸
A

+[0 | −yx ⊗ G] ·wx

17 / 18

Replacement-free Selectively Secure Accumulator in ACs revocation

From Lattice-based zero-knowledge proofs [Lyu12 ; ENS20 ; LNP+21 ; LNP22 ; BS23], we know how to
prove knowledge of v such that

Cv = t, ∥v∥ ≤ β

For our construction, we need to prove knowledge of (x, wx) such that

[A | B− x⊗ G] ·wx = A , ∥wx∥ ≤ β′ (1)

How can we handle x?
• Compute a commitment Com(x; r) and produce a proofπCom = (w, c, z).
• From z, we can extract zx = yx + c · x such that

[cA | cB− zx ⊗ G] ·wx = c [A | B− x⊗ G] ·wx︸ ︷︷ ︸
A

+[0 | −yx ⊗ G] ·wx

17 / 18

Replacement-free Selectively Secure Accumulator in ACs revocation

From Lattice-based zero-knowledge proofs [Lyu12 ; ENS20 ; LNP+21 ; LNP22 ; BS23], we know how to
prove knowledge of v such that

Cv = t, ∥v∥ ≤ β

For our construction, we need to prove knowledge of (x, wx) such that

[A | B− x⊗ G] ·wx = A , ∥wx∥ ≤ β′ (1)

How can we handle x?
• Compute a commitment Com(x; r) and produce a proofπCom = (w, c, z).
• From z, we can extract zx = yx + c · x such that

[cA | cB− zx ⊗ G] ·wx = c [A | B− x⊗ G] ·wx︸ ︷︷ ︸
A

+[0 | −yx ⊗ G] ·wx

17 / 18

Replacement-free Selectively Secure Accumulator in ACs revocation

From Lattice-based zero-knowledge proofs [Lyu12 ; ENS20 ; LNP+21 ; LNP22 ; BS23], we know how to
prove knowledge of v such that

Cv = t, ∥v∥ ≤ β

For our construction, we need to prove knowledge of (x, wx) such that

[A | B− x⊗ G] ·wx = A , ∥wx∥ ≤ β′ (1)

How can we handle x?
• Compute a commitment Com(x; r) and produce a proofπCom = (w, c, z).
• From z, we can extract zx = yx + c · x such that

[cA | cB− zx ⊗ G] ·wx = c [A | B− x⊗ G] ·wx︸ ︷︷ ︸
A

+[0 | −yx ⊗ G] ·wx

17 / 18

Thank You!
https://ia.cr/2025/1099

Some icons were sourced from Flaticon.com
18 / 18

https://ia.cr/2025/1099
https://ia.cr/2025/1099

Reference I

[ABB10] S. Agrawal, D. Boneh, and X. Boyen. “Efficient Lattice (H)IBE in the Standard Model”. In:
Advances in Cryptology - EUROCRYPT 2010, 29th Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Monaco / French Riviera, May 30 - June 3, 2010.
Proceedings. Ed. by H. Gilbert. Vol. 6110. Lecture Notes in Computer Science. Springer, 2010,
pp. 553–572.

[ATS+09] M. H. Au et al. “Dynamic Universal Accumulators for DDH Groups and Their Application to
Attribute-Based Anonymous Credential Systems”. In: Topics in Cryptology - CT-RSA 2009, The
Cryptographers’ Track at the RSA Conference 2009, San Francisco, CA, USA, April 20-24, 2009.
Proceedings. Ed. by M. Fischlin. Vol. 5473. Lecture Notes in Computer Science. Springer,
2009, pp. 295–308.

[BBC+24] C. Baum et al. Cryptographers’ Feedback on the EU Digital Identity’s ARF.
https://github.com/user-attachments/files/15904122/cryptographers-

feedback.pdf. 2024.

18 / 18

https://github.com/user-attachments/files/15904122/cryptographers-feedback.pdf
https://github.com/user-attachments/files/15904122/cryptographers-feedback.pdf

Reference II

[BCD+17] F. Baldimtsi et al. “Accumulators with Applications to Anonymity-Preserving Revocation”.
In: 2017 IEEE European Symposium on Security and Privacy, EuroS&P 2017, Paris, France, April
26-28, 2017. IEEE, 2017, pp. 301–315.

[BGG+14] D. Boneh et al. “Fully Key-Homomorphic Encryption, Arithmetic Circuit ABE and Compact
Garbled Circuits”. In: Advances in Cryptology - EUROCRYPT 2014 - 33rd Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Copenhagen, Denmark,
May 11-15, 2014. Proceedings. Ed. by P. Q. Nguyen and E. Oswald. Vol. 8441. Lecture Notes in
Computer Science. Springer, 2014, pp. 533–556.

[BS23] W. Beullens and G. Seiler. “LaBRADOR: Compact Proofs for R1CS from Module-SIS”. In:
CRYPTO (5). Vol. 14085. Lecture Notes in Computer Science. Springer, 2023, pp. 518–548.

18 / 18

Reference III

[CKS09] J. Camenisch, M. Kohlweiss, and C. Soriente. “An Accumulator Based on Bilinear Maps and
Efficient Revocation for Anonymous Credentials”. In: Public Key Cryptography - PKC 2009,
12th International Conference on Practice and Theory in Public Key Cryptography, Irvine, CA, USA,
March 18-20, 2009. Proceedings. Ed. by S. Jarecki and G. Tsudik. Vol. 5443. Lecture Notes in
Computer Science. Springer, 2009, pp. 481–500.

[CL02 a] J. Camenisch and A. Lysyanskaya. “A Signature Scheme with Efficient Protocols”. In: SCN.
Vol. 2576. Lecture Notes in Computer Science. Springer, 2002, pp. 268–289.

[CL02 b] J. Camenisch and A. Lysyanskaya. “Dynamic Accumulators and Application to Efficient
Revocation of Anonymous Credentials”. In: Advances in Cryptology - CRYPTO 2002, 22nd
Annual International Cryptology Conference, Santa Barbara, California, USA, August 18-22, 2002,
Proceedings. Ed. by M. Yung. Vol. 2442. Lecture Notes in Computer Science. Springer, 2002,
pp. 61–76.

18 / 18

Reference IV
[CP23] L. de Castro and C. Peikert. “Functional Commitments for All Functions, with Transparent

Setup and from SIS”. In: Advances in Cryptology – EUROCRYPT 2023: 42nd Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Lyon, France, April 23-27,
2023, Proceedings, Part III. Lyon, France: Springer-Verlag, 2023, pp. 287–320. isbn:
978-3-031-30619-8.

[DHS15] D. Derler, C. Hanser, and D. Slamanig. “Revisiting Cryptographic Accumulators, Additional
Properties and Relations to Other Primitives”. In: Topics in Cryptology — CT-RSA 2015. Ed. by
K. Nyberg. Cham: Springer International Publishing, 2015, pp. 127–144. isbn:
978-3-319-16715-2.

[ENS20] M. F. Esgin, N. K. Nguyen, and G. Seiler. “Practical Exact Proofs from Lattices: New
Techniques to Exploit Fully-Splitting Rings”. In: Advances in Cryptology - ASIACRYPT 2020 -
26th International Conference on the Theory and Application of Cryptology and Information
Security, Daejeon, South Korea, December 7-11, 2020, Proceedings, Part II. Ed. by S. Moriai and
H. Wang. Vol. 12492. Lecture Notes in Computer Science. Springer, 2020, pp. 259–288.

18 / 18

Reference V

[GSW13] C. Gentry, A. Sahai, and B. Waters. “Homomorphic Encryption from Learning with Errors:
Conceptually-Simpler, Asymptotically-Faster, Attribute-Based”. In: Advances in Cryptology –
CRYPTO 2013. Ed. by R. Canetti and J. A. Garay. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2013, pp. 75–92. isbn: 978-3-642-40041-4.

[JML24] S. Jaques, H. Montgomery, and M. Lodder. “ALLOSAUR: Accumulator with Low-Latency
Oblivious Sublinear Anonymous credential Updates with Revocations”. In: Proceedings of the
19th ACM Asia Conference on Computer and Communications Security, ASIA CCS 2024, Singapore,
July 1-5, 2024. Ed. by J. Zhou et al. ACM, 2024.

[KB21] I. Karantaidou and F. Baldimtsi. “Efficient Constructions of Pairing Based Accumulators”. In:
34th IEEE Computer Security Foundations Symposium, CSF 2021, Dubrovnik, Croatia, June 21-25,
2021. IEEE, 2021, pp. 1–16.

18 / 18

Reference VI
[KL24] V. Y. Kemmoe and A. Lysyanskaya. “RSA-Based Dynamic Accumulator without Hashing into

Primes”. In: Proceedings of the 2024 on ACM SIGSAC Conference on Computer and
Communications Security, CCS 2024, Salt Lake City, UT, USA, October 14-18, 2024. Ed. by B. Luo
et al. ACM, 2024, pp. 4271–4285.

[LLN+23] B. Libert et al. “Zero-Knowledge Arguments for Lattice-Based Accumulators:
Logarithmic-Size Ring Signatures and Group Signatures Without Trapdoors”. In: J. Cryptol.
36.3 (2023), p. 23.

[LLX07] J. Li, N. Li, and R. Xue. “Universal Accumulators with Efficient Nonmembership Proofs”. In:
Applied Cryptography and Network Security, 5th International Conference, ACNS 2007, Zhuhai,
China, June 5-8, 2007, Proceedings. Ed. by J. Katz and M. Yung. Vol. 4521. Lecture Notes in
Computer Science. Springer, 2007, pp. 253–269.

[LNP+21] V. Lyubashevsky et al. “Shorter Lattice-Based Group Signatures via ”Almost Free” Encryption
and Other Optimizations”. In: ASIACRYPT (4). Vol. 13093. Lecture Notes in Computer
Science. Springer, 2021, pp. 218–248.

18 / 18

Reference VII
[LNP22] V. Lyubashevsky, N. K. Nguyen, and M. Plançon. “Lattice-Based Zero-Knowledge Proofs and

Applications: Shorter, Simpler, and More General”. In: Advances in Cryptology – CRYPTO 2022:
42nd Annual International Cryptology Conference, CRYPTO 2022, Santa Barbara, CA, USA,
August 15–18, 2022, Proceedings, Part II. Santa Barbara, CA, USA: Springer-Verlag, 2022,
pp. 71–101. isbn: 978-3-031-15978-7.

[Lyu12] V. Lyubashevsky. “Lattice Signatures without Trapdoors”. In: Advances in Cryptology -
EUROCRYPT 2012 - 31st Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Cambridge, UK, April 15-19, 2012. Proceedings. Ed. by D. Pointcheval
and T. Johansson. Vol. 7237. Lecture Notes in Computer Science. Springer, 2012,
pp. 738–755.

[MP12] D. Micciancio and C. Peikert. “Trapdoors for lattices: simpler, tighter, faster, smaller”. In:
Proceedings of the 31st Annual International Conference on Theory and Applications of
Cryptographic Techniques. EUROCRYPT’12. Cambridge, UK: Springer-Verlag, 2012,
pp. 700–718. isbn: 9783642290107.

18 / 18

Reference VIII

[Ngu05] L. Nguyen. “Accumulators from Bilinear Pairings and Applications”. In: Topics in Cryptology -
CT-RSA 2005, The Cryptographers’ Track at the RSA Conference 2005, San Francisco, CA, USA,
February 14-18, 2005, Proceedings. Ed. by A. Menezes. Vol. 3376. Lecture Notes in Computer
Science. Springer, 2005, pp. 275–292.

[PST+13] C. Papamanthou et al. “Streaming Authenticated Data Structures”. In: Advances in
Cryptology - EUROCRYPT 2013, 32nd Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Athens, Greece, May 26-30, 2013. Proceedings. Ed. by
T. Johansson and P. Q. Nguyen. Vol. 7881. Lecture Notes in Computer Science. Springer,
2013, pp. 353–370.

[WW23] H. Wee and D. J. Wu. “Lattice-Based Functional Commitments: Fast Verification
and Cryptanalysis”. In: Advances in Cryptology – ASIACRYPT 2023. Ed. by J. Guo and
R. Steinfeld. Singapore: Springer Nature Singapore, 2023, pp. 201–235. isbn:
978-981-99-8733-7.

18 / 18

Reference IX

[YAY+18] Z. Yu et al. “Lattice-Based Universal Accumulator with Nonmembership Arguments”. In:
Information Security and Privacy - 23rd Australasian Conference, ACISP 2018, Wollongong, NSW,
Australia, July 11-13, 2018, Proceedings. Ed. by W. Susilo and G. Yang. Vol. 10946. Lecture
Notes in Computer Science. Springer, 2018, pp. 502–519.

[ZYH24] Y. Zhao, S. Yang, and X. Huang. “Lattice-based dynamic universal accumulator: Design and
application”. In: Comput. Stand. Interfaces 89 (2024), p. 103807.

18 / 18

	References

