Lattice-Based Accumulator and Application to Anonymous Credential Revocation

Victor Youdom Kemmoe

Anna Lysyanskaya Ngoc Khanh Nguyen

Anonymous Credentials [CL02 a; BBC+24]

Credential Issuance

- MemWitUp $(x, w_{x,t}, \mathsf{upmsg}_{t+1}) \rightarrow w_{x,t+1}$
- MemVerify $(\mathscr{A}_t, x, w_{x,t}) \to \mathsf{Accept/Reject}$

- MemWitUp($x, w_{x,t}, upmsg_{t+1}$
- MemVerify $(\mathscr{A}_t,x,w_{\mathsf{x},t}) o \mathsf{Acc}$
- Compactness: $|\mathscr{A}| = \operatorname{poly}(\lambda)$, $|w_{x,t}| = \operatorname{poly}(\lambda, |x|)$
- **Security**: *Hard* to produce a w_x for $x \notin S$
- Communication efficiency: |upmsg| = O(#Del)

Credential Issuance

Credential Issuance

Prior works on Positive Dynamic Accumulators

Scheme	Assumption	w	upmsg _{Add}	upmsg _{Del}	pp
[CL02 b; LLX07 ; KL24]	Strong RSA	$\ell \cdot poly(\lambda)$	ℓ^*	ℓ	$poly(\lambda)$
[BCD+17; KL24]	Strong RSA	$\ell \cdot poly(\lambda)$	_	ℓ	$poly(\lambda)$
[Ngu05; ATS+09; CKS09]	q-Strong DH	$poly(\lambda)$	ℓ*	ℓ	$s \cdot poly(\lambda)$
[KB21; JML24]	q-Strong DH	$poly(\lambda)$	_	ℓ	$poly(\lambda)$
[PST+13 ; YAY+18 ; LLN+23]	M-SIS	$poly(\lambda) \cdot log s$	$poly(\lambda) \cdot log s^*$	$poly(\lambda) \cdot log s$	$poly(\lambda)$
[ZYH24]	M-SIS	$poly(\lambda)$	$\operatorname{poly}(\lambda)^*$	$poly(\lambda)$	$poly(\lambda) \cdot s \log s$
[CP23]	M-SIS	$\ell \cdot poly(\lambda)$	<i>ℓ</i> *	ℓ	$\ell \cdot poly(\lambda)$
[CP23]+[WW23]	ℓ-Succinct M-SIS	$poly(\lambda)$	ℓ^*	ℓ	$\ell^2 \cdot poly(\lambda)$
Our work	M-SIS	$\ell \cdot poly(\lambda)$	_	ℓ	$\ell \cdot poly(\lambda)$
	ℓ -Succinct M-SIS	$poly(\lambda)$	_	ℓ	$\ell^2 \cdot poly(\lambda)$

[•] ℓ : Input's bit length • *: |upmsg| = 0 for a fix set in pre-processing • s: Size of the set

Prior works on Positive Dynamic Accumulators

Scheme	Assumption	w	upmsg _{Add}	upmsg _{Del}	pp
[CL02 b; LLX07 ; KL24]	Strong RSA	$\ell \cdot poly(\lambda)$	ℓ*	ℓ	$poly(\lambda)$
[BCD+17; KL24]	Strong RSA	$\ell \cdot poly(\lambda)$	_	ℓ	$poly(\lambda)$
[Ngu05; ATS+09; CKS09]	q-Strong DH	$poly(\lambda)$	<i>ℓ</i> *	ℓ	$s \cdot poly(\lambda)$
[KB21; JML24]	q-Strong DH	$poly(\lambda)$	-	ℓ	$poly(\lambda)$
[PST+13 ; YAY+18 ; LLN+23]	M-SIS	$poly(\lambda) \cdot log s$	$poly(\lambda) \cdot log s^*$	$poly(\lambda) \cdot log s$	$poly(\lambda)$
[ZYH24]	M-SIS	$poly(\lambda)$	$poly(\lambda)^*$	$poly(\lambda)$	$poly(\lambda) \cdot s \log s$
[CP23]	M-SIS	$\ell \cdot poly(\lambda)$	ℓ*	ℓ	$\ell \cdot poly(\lambda)$
[CP23]+[WW23]	ℓ -Succinct M-SIS	$poly(\lambda)$	ℓ^*	ℓ	$\ell^2 \cdot poly(\lambda)$
Our work	M-SIS	$\ell \cdot poly(\lambda)$	_	ℓ	$\ell \cdot poly(\lambda)$
	ℓ -Succinct M-SIS	$poly(\lambda)$	_	ℓ	$\ell^2 \cdot poly(\lambda)$

[•] ℓ : Input's bit length • *: |upmsg| = 0 for a fix set in pre-processing • s: Size of the set

Prior works on Positive Dynamic Accumulators

Scheme	Assumption	w	upmsg _{Add}	upmsg _{Del}	pp
[CL02 b; LLX07 ; KL24]	Strong RSA	$\ell \cdot poly(\lambda)$	ℓ^*	ℓ	$poly(\lambda)$
[BCD+17; KL24]	Strong RSA	$\ell \cdot poly(\lambda)$	_	ℓ	$poly(\lambda)$
[Ngu05; ATS+09; CKS09]	q-Strong DH	$poly(\lambda)$	ℓ^*	ℓ	$s \cdot poly(\lambda)$
[KB21; JML24]	q-Strong DH	$poly(\lambda)$	_	ℓ	$poly(\lambda)$
[PST+13 ; YAY+18 ; LLN+23]	M-SIS	$\operatorname{poly}(\lambda) \cdot \log s$	$poly(\lambda) \cdot log s^*$	$poly(\lambda) \cdot log s$	$poly(\lambda)$
[ZYH24]	M-SIS	$poly(\lambda)$	$poly(\lambda)^*$	$poly(\lambda)$	$poly(\lambda) \cdot s \log s$
[CP23]	M-SIS	$\ell \cdot poly(\lambda)$	ℓ*	ℓ	$\ell \cdot poly(\lambda)$
[CP23]+[WW23]	ℓ -Succinct M-SIS	$poly(\lambda)$	ℓ*	ℓ	$\ell^2 \cdot poly(\lambda)$
Our work	M-SIS	$\ell \cdot poly(\lambda)$	_	ℓ	$\ell \cdot poly(\lambda)$
	ℓ -Succinct M-SIS	$poly(\lambda)$	_	ℓ	$\ell^2 \cdot poly(\lambda)$

• ℓ : Input's bit length • *: |upmsg| = 0 for a fix set in pre-processing • s: Size of the set

Digital Signature

Let $\Sigma = (Gen, Sign, Verify)$ be a digital signature

- $Gen(1^{\lambda}) \rightarrow (pk, sk)$
- Sign(sk, m) $\rightarrow \sigma$
- Verify(pk, m, σ) $\rightarrow 1/0$

Security

It should be hard for an adversary to generate (m^*, σ^*) given pk and $\{(m_i, \sigma_i)\}$ where $m^* \neq m_i$ for all i.

Let $\Sigma =$ (Gen, Sign, Verify) be a digital signature. In addition, suppose Σ supports the following operations:

- UpdatePK(pk, sk, \bar{m}) \rightarrow (pk', upmsg)
- UpdateSig $(m, \sigma_m, \text{upmsg}) \rightarrow \sigma'_m$

Let $\Sigma =$ (Gen, Sign, Verify) be a digital signature. In addition, suppose Σ supports the following operations:

- UpdatePK(pk, sk, \bar{m}) \rightarrow (pk', upmsg)
- UpdateSig $(m, \sigma_m, \text{upmsg}) \rightarrow \sigma'_m$

Desiderata

- Verify(pk', m, σ'_m) = 1 with overwhelming probability for any $m \neq \bar{m}$
- Verify $(pk', \bar{m}, \sigma'_{\bar{m}}) = 0$ with overwhelming probability*

Let $\Sigma =$ (Gen, Sign, Verify) be a digital signature. In addition, suppose Σ supports the following operations:

- UpdatePK(pk, sk, \bar{m}) \rightarrow (pk', upmsg)
- UpdateSig $(m, \sigma_m, upmsg) \rightarrow \sigma'_m$

Desiderata

- Verify(pk', m, σ'_m) = 1 with overwhelming probability for any $m \neq \bar{m}$
- Verify $(pk', \bar{m}, \sigma'_{\bar{m}}) = 0$ with overwhelming probability*

UpdatePK allows to revoke signatures on messages.

- Add(pk, sk, x):
 - **1** Compute $\sigma_x \leftarrow \Sigma.Sign(pp, sk, x)$.
 - 2 Return σ_x as w_x

- Add(pk, sk, x):
 - **1** Compute $\sigma_x \leftarrow \Sigma$. Sign(pp, sk, x).
 - 2 Return σ_x as w_x
- Delete(pk, sk, y):
 - ① Compute $(pk', upmsg) \leftarrow \Sigma.UpdatePK(pk, sk, y).$
 - Return (pk', upmsg)

- Add(pk, sk, x):
 - **1** Compute $\sigma_x \leftarrow \Sigma$. Sign(pp, sk, x).
 - 2 Return σ_x as w_x
- Delete(pk, sk, y):
 - **1** Compute (pk', upmsg) ← Σ .UpdatePK(pk, sk, y).
 - Return (pk', upmsg)

- MemWitUp($x, w_x, upmsg$):
 - 1 Parse w_x as σ_x .
 - **2** Compute $\sigma'_x \leftarrow \Sigma$.UpdateSig(x, σ_x , upmsg).
 - 3 Return σ'_{x} as w'_{x} .

- Add(pk, sk, x):
 - **1** Compute $\sigma_x \leftarrow \Sigma$. Sign(pp, sk, x).
 - 2 Return σ_x as w_x
- Delete(pk, sk, *y*):
 - **1** Compute (pk', upmsg) ← Σ .UpdatePK(pk, sk, y).
 - 2 Return (pk', upmsg)

- MemWitUp(x, w_x, upmsg):
 - 1 Parse w_x as σ_x .
 - **2** Compute $\sigma'_x \leftarrow \Sigma$.UpdateSig(x, σ_x , upmsg).
 - 3 Return σ'_x as w'_x .
- MemVerify(pk, x, w_x):
 - 1 Parse w_x as σ_x .
 - 2 Return Σ . Verify (pk, x, σ_x).

Given $\Sigma =$ (Gen, Sign, UpdatePK, UpdateSig, Verify) we construct a positive dynamic accumulator as follows:

- Add(pk, sk, x):
 - **1** Compute $\sigma_x \leftarrow \Sigma$. Sign(pp, sk, x).
 - 2 Return σ_x as w_x
- Delete(pk, sk, *y*):
 - **1** Compute (pk', upmsg) ← Σ .UpdatePK(pk, sk, y).
 - 2 Return (pk', upmsg)

- MemWitUp($x, w_x, upmsg$):
 - 1 Parse w_x as σ_x .
 - **2** Compute $\sigma'_x \leftarrow \Sigma$.UpdateSig(x, σ_x , upmsg).
 - 3 Return σ'_{x} as w'_{x} .
- MemVerify(pk, x, w_x):
 - 1 Parse w_x as σ_x .
 - **2** Return Σ . Verify (pk, x, σ_x) .

This construction is communication efficient, i.e., |upmsg| = O(#Del).

Gadget Matrix

[MP12]

Let $R_a \supseteq \mathbb{Z}_a$ be a ring such that R_a^m admits an ℓ_∞ -norm

$$\mathbf{G} = \begin{bmatrix} 1, 2, 4, \dots, 2^{k-1} & & & & \\ & 1, 2, 4, \dots, 2^{k-1} & & & \\ & & & \ddots & & \\ & & & & 1, 2, 4, \dots, 2^{k-1} \end{bmatrix} \in R_q^{n \times nk}$$

Gadget Matrix

[MP12]

Let $R_q \supseteq \mathbb{Z}_q$ be a ring such that R_q^m admits an ℓ_∞ -norm

$$\mathbf{G} = egin{bmatrix} 1, 2, 4, \dots, 2^{k-1} & & & & & & \\ & & 1, 2, 4, \dots, 2^{k-1} & & & & & \\ & & & \ddots & & & & \\ & & & & 1, 2, 4, \dots, 2^{k-1} \end{bmatrix} \in R_q^{n \times nk}$$

- $k = \lceil \log q \rceil$.
- There exists a decomposition function $\mathbf{G}^{-1}: R_q^n \to R_q^{nk}$ such that for any $\mathbf{u} \in R_q^n$, we have $\mathbf{G} \cdot \mathbf{G}^{-1}(\mathbf{u}) = \mathbf{u}$ and $\|\mathbf{G}^{-1}(\mathbf{u})\|_{\infty} = 1$

Homomorphic Operations on Matrices

[GSW13; BGG+14; CP23]

For any $\ell \in \mathbb{N}$, let $\mathcal{F} = \{f_i : \{0,1\}^\ell \to \{0,1\}\}_{i \in \mathbb{N}}$ be a family of Boolean circuits. Then, there exist efficient algorithm EvalF and EvalFX such that for any $\mathbf{B} \in \mathcal{R}_q^{n \times \ell m}$, $f \in \mathcal{F}$, and $x \in \{0,1\}^\ell$:

- EvalF $(f, \mathbf{B}) \rightarrow \mathbf{B}_f$
- EvalFX $(f, \mathbf{B}, x) \to \mathbf{H}_{f, x}$ with $\|\mathbf{H}_{f, x}\|_{\infty} = 1$

s.t.
$$(\mathbf{B} - x \otimes \mathbf{G}) \cdot \mathbf{H}_{f,x} = \mathbf{B}_f - f(x) \cdot \mathbf{G}$$

Homomorphic Operations on Matrices

[GSW13; BGG+14; CP23]

For any $\ell \in \mathbb{N}$, let $\mathcal{F} = \{f_i : \{0,1\}^\ell \to \{0,1\}\}_{i \in \mathbb{N}}$ be a family of Boolean circuits. Then, there exist efficient algorithm EvalF and EvalFX such that for any $\mathbf{B} \in \mathcal{R}_q^{n \times \ell m}$, $f \in \mathcal{F}$, and $x \in \{0,1\}^\ell$:

- EvalF $(f, \mathbf{B}) \rightarrow \mathbf{B}_f$
- EvalFX $(f, \mathbf{B}, x) \to \mathbf{H}_{f, x}$ with $\|\mathbf{H}_{f, x}\|_{\infty} = 1$

s.t.
$$(\mathbf{B} - x \otimes \mathbf{G}) \cdot \mathbf{H}_{f,x} = \mathbf{B}_f - f(x) \cdot \mathbf{G}$$

Homomorphic Operations on Matrices

[GSW13; BGG+14; CP23]

For any $\ell \in \mathbb{N}$, let $\mathcal{F} = \{f_i : \{0,1\}^\ell \to \{0,1\}\}_{i \in \mathbb{N}}$ be a family of Boolean circuits. Then, there exist efficient algorithm EvalF and EvalFX such that for any $\mathbf{B} \in R_q^{n \times \ell m}$, $f \in \mathcal{F}$, and $x \in \{0,1\}^\ell$:

- EvalF $(f, \mathbf{B}) \rightarrow \mathbf{B}_f$
- EvalFX $(f, \mathbf{B}, x) \to \mathbf{H}_{f, x}$ with $\|\mathbf{H}_{f, x}\|_{\infty} = 1$

s.t.
$$(\mathbf{B} - \mathbf{x} \otimes \mathbf{G}) \cdot \mathbf{H}_{f,x} = \mathbf{B}_f - f(\mathbf{x}) \cdot \mathbf{G}$$

$$\mathcal{F}_{Indicator}: \{\mathbb{1}_y: \{0,1\}^\ell \to \{0,1\}\}, \text{ where } \mathbb{1}_y(x) = \begin{cases} 1 \text{ if } x = y \\ 0 \text{ otherwise} \end{cases}$$

Communication efficient accumulator

$$pp = (\mathbf{A} \in R_q^{n \times \bar{m}}, \mathbf{B} \in R_q^{n \times \ell m}), \text{sk} = \mathbf{T_A}, \mathscr{A}_0 \iff R_q^{n \times m} \\ \text{sk allows to compute a low-norm matrix } \mathbf{V} \leftarrow \text{SamplePre}_{\text{sk}}([\mathbf{A} \mid \bar{\mathbf{B}}], \mathbf{U}) \text{s.t.} [\mathbf{A} \mid \bar{\mathbf{B}}] \cdot \mathbf{V} = \mathbf{U} \text{ for any } \bar{\mathbf{B}}.$$

Communication efficient accumulator

$$pp = (\mathbf{A} \in R_q^{n \times \bar{m}}, \mathbf{B} \in R_q^{n \times \ell m}), \text{sk} = \mathbf{T_A}, \mathscr{A}_0 \longleftrightarrow R_q^{n \times m}$$
 sk allows to compute a low-norm matrix $\mathbf{V} \leftarrow \text{SamplePre}_{\text{sk}}([\mathbf{A} \mid \bar{\mathbf{B}}], \mathbf{U}) \text{ s.t. } [\mathbf{A} \mid \bar{\mathbf{B}}] \cdot \mathbf{V} = \mathbf{U} \text{ for any } \bar{\mathbf{B}}.$

- Add(pp, sk, A, x):
 - **1** Sample $\mathbf{S}_x \leftarrow \text{SamplePre}_{\text{sk}}([\mathbf{A} \mid \mathbf{B} x \otimes \mathbf{G}], \mathscr{A})$
 - 2 Return \mathbf{S}_x as w_x

Communication efficient accumulator

$$pp = (\mathbf{A} \in R_q^{n \times \bar{m}}, \mathbf{B} \in R_q^{n \times \ell m}), \text{sk} = \mathbf{T_A}, \mathscr{A}_0 \longleftrightarrow R_q^{n \times m}$$
 sk allows to compute a low-norm matrix $\mathbf{V} \leftarrow \text{SamplePre}_{\text{sk}}([\mathbf{A} \mid \bar{\mathbf{B}}], \mathbf{U}) \text{ s.t. } [\mathbf{A} \mid \bar{\mathbf{B}}] \cdot \mathbf{V} = \mathbf{U} \text{ for any } \bar{\mathbf{B}}.$

- Add(pp, sk, \mathscr{A} , x):
 - **1** Sample $\mathbf{S}_x \leftarrow \text{SamplePre}_{\text{sk}}([\mathbf{A} \mid \mathbf{B} x \otimes \mathbf{G}], \mathscr{A})$
 - 2 Return \mathbf{S}_x as w_x

- Delete(pp, *A*, *y*):
 - **1** Compute $\mathbf{B}_{\mathbb{1}_y} \leftarrow \text{EvalF}(\mathbb{1}_y, \mathbf{B})$
 - 2 Compute $\mathscr{A}' \leftarrow \mathscr{A} + \mathbf{B}_{1}$
 - 3 Return $(\mathscr{A}', upmsg = \{y\})$

Communication efficient accumulator

$$pp = (\mathbf{A} \in R_q^{n \times \bar{m}}, \mathbf{B} \in R_q^{n \times \ell m}), \text{sk} = \mathbf{T_A}, \mathscr{A}_0 \longleftrightarrow R_q^{n \times m}$$
 sk allows to compute a low-norm matrix $\mathbf{V} \leftarrow \text{SamplePre}_{\text{sk}}([\mathbf{A} \mid \bar{\mathbf{B}}], \mathbf{U}) \text{s.t.} [\mathbf{A} \mid \bar{\mathbf{B}}] \cdot \mathbf{V} = \mathbf{U} \text{ for any } \bar{\mathbf{B}}.$

- Add(pp, sk, \mathscr{A} , x):
 - **1** Sample $\mathbf{S}_x \leftarrow \mathsf{SamplePre}_{\mathsf{sk}}([\mathbf{A} \mid \mathbf{B} x \otimes \mathbf{G}], \mathscr{A})$
 - 2 Return S_x as w_x

- Delete(pp, \mathscr{A} , y):
 - **1** Compute $\mathbf{B}_{\mathbb{1}_y} \leftarrow \text{EvalF}(\mathbb{1}_y, \mathbf{B})$
 - 2 Compute $\mathscr{A}' \leftarrow \mathscr{A} + \mathbf{B}_{1}$
 - 3 Return $(\mathscr{A}', upmsg = \{y\})$

- MemWitUp(pp, x, w_x , upmsg = {y}):
 - 1 Compute $\mathbf{H}_{\mathbb{1}_y,\mathbf{B},x} \leftarrow \text{EvalFX}(\mathbb{1}_y,\mathbf{B},x)$
 - 2 Compute $w_x' \leftarrow w_x + \begin{bmatrix} \mathbf{0} \\ \mathbf{H}_{1_y, \mathbf{B}, x} \end{bmatrix}$
 - 3 Return w'_x

Communication efficient accumulator

$$pp = (\mathbf{A} \in R_q^{n \times \bar{m}}, \mathbf{B} \in R_q^{n \times \ell m}), \text{sk} = \mathbf{T_A}, \mathscr{A}_0 \longleftrightarrow R_q^{n \times m}$$
 sk allows to compute a low-norm matrix $\mathbf{V} \leftarrow \text{SamplePre}_{\text{sk}}([\mathbf{A} \mid \bar{\mathbf{B}}], \mathbf{U}) \text{s.t.} [\mathbf{A} \mid \bar{\mathbf{B}}] \cdot \mathbf{V} = \mathbf{U} \text{ for any } \bar{\mathbf{B}}.$

- Add(pp, sk, \mathscr{A} , x):
 - **1** Sample $\mathbf{S}_x \leftarrow \mathsf{SamplePre}_{\mathsf{sk}}([\mathbf{A} \mid \mathbf{B} x \otimes \mathbf{G}], \mathscr{A})$
 - 2 Return \mathbf{S}_x as w_x

- Delete(pp, A, y):
 - **1** Compute $\mathbf{B}_{\mathbb{1}_y} \leftarrow \text{EvalF}(\mathbb{1}_y, \mathbf{B})$
 - 2 Compute $\mathscr{A}' \leftarrow \mathscr{A} + \mathbf{B}_{1_y}$
 - 3 Return $(\mathscr{A}', upmsg = \{y\})$

- MemWitUp(pp, x, w_x , upmsg = {y}):
 - 1 Compute $\mathbf{H}_{\mathbb{1}_y,\mathbf{B},x} \leftarrow \text{EvalFX}(\mathbb{1}_y,\mathbf{B},x)$
 - 2 Compute $w_x' \leftarrow w_x + \begin{bmatrix} \mathbf{0} \\ \mathbf{H}_{1_y, \mathbf{B}, x} \end{bmatrix}$
 - 3 Return w'_x
- MemVerify(pp, \mathscr{A} , x, w_x):
 - 1 Check if $[\mathbf{A} \mid \mathbf{B} x \otimes \mathbf{G}] \cdot w_x = \mathscr{A}$ and $\|w_x\|_{\infty}$ is small

Communication efficient accumulator – Correctness

Let $x \in \{0,1\}^{\ell}$ with an updated witness w_x' that was generated after deleting $y \neq x \in \{0,1\}^{\ell}$. We have $\mathscr{A}' = \mathscr{A} + \mathbf{B}_{1v}$.

Communication efficient accumulator - Correctness

Let $x \in \{0,1\}^{\ell}$ with an updated witness w_x' that was generated after deleting $y \neq x \in \{0,1\}^{\ell}$. We have $\mathscr{A}' = \mathscr{A} + \mathbf{B}_{1y}$.

•
$$w_x' = w_x + \begin{bmatrix} \mathbf{0} \\ \mathbf{H}_{1_y, \mathbf{B}, x} \end{bmatrix}$$
, where $w_x = \mathbf{S}_x \leftarrow \mathsf{SamplePre}_{\mathsf{sk}}([\mathbf{A} \mid \mathbf{B} - x \otimes \mathbf{G}], \mathscr{A})$

Communication efficient accumulator - Correctness

Let $x \in \{0,1\}^{\ell}$ with an updated witness w_x' that was generated after deleting $y \neq x \in \{0,1\}^{\ell}$. We have $\mathscr{A}' = \mathscr{A} + \mathbf{B}_{1y}$.

- $w_x' = w_x + \begin{bmatrix} \mathbf{0} \\ \mathbf{H}_{1v, \mathbf{B}, x} \end{bmatrix}$, where $w_x = \mathbf{S}_x \leftarrow \mathsf{SamplePre}_{\mathsf{sk}}([\mathbf{A} \mid \mathbf{B} x \otimes \mathbf{G}], \mathscr{A})$
- Therefore,

$$\begin{bmatrix} \mathbf{A} \mid \mathbf{B} - \mathbf{x} \otimes \mathbf{G} \end{bmatrix} \begin{pmatrix} \mathbf{S}_{\mathbf{x}} + \begin{bmatrix} \mathbf{0} \\ \mathbf{H}_{\mathbb{1}_{y}, \mathbf{B}, \mathbf{x}} \end{bmatrix} \end{pmatrix} = \mathscr{A} + (\mathbf{B} - \mathbf{x} \otimes \mathbf{G}) \cdot \mathbf{H}_{\mathbb{1}_{y}, \mathbf{B}, \mathbf{x}}$$
$$= \mathscr{A} + \mathbf{B}_{\mathbb{1}_{y}} - \mathbb{1}_{y}(\mathbf{x})\mathbf{G}$$
$$= \mathscr{A}' \quad (\text{Since } \mathbb{1}_{y}(\mathbf{x}) = 0)$$

Communication efficient accumulator - Correctness

Let $x \in \{0,1\}^{\ell}$ with an updated witness w_x' that was generated after deleting $y \neq x \in \{0,1\}^{\ell}$. We have $\mathscr{A}' = \mathscr{A} + \mathbf{B}_{1_y}$.

- $w_x' = w_x + \begin{bmatrix} \mathbf{0} \\ \mathbf{H}_{\mathbb{L}_v, \mathbf{B}, x} \end{bmatrix}$, where $w_x = \mathbf{S}_x \leftarrow \mathsf{SamplePre}_{\mathsf{sk}}([\mathbf{A} \mid \mathbf{B} x \otimes \mathbf{G}], \mathscr{A})$
- Therefore,

$$\begin{bmatrix} \mathbf{A} \mid \mathbf{B} - \mathbf{x} \otimes \mathbf{G} \end{bmatrix} \begin{pmatrix} \mathbf{S}_{\mathbf{x}} + \begin{bmatrix} \mathbf{0} \\ \mathbf{H}_{\mathbb{I}_{y}, \mathbf{B}, \mathbf{x}} \end{bmatrix} \end{pmatrix} = \mathscr{A} + (\mathbf{B} - \mathbf{x} \otimes \mathbf{G}) \cdot \mathbf{H}_{\mathbb{I}_{y}, \mathbf{B}, \mathbf{x}}$$
$$= \mathscr{A} + \mathbf{B}_{\mathbb{I}_{y}} - \mathbb{I}_{y}(\mathbf{x})\mathbf{G}$$
$$= \mathscr{A}' \quad (\text{Since } \mathbb{I}_{y}(\mathbf{x}) = \mathbf{0})$$

•
$$\|w_x'\|_{\infty} = \|w_x\|_{\infty} + \|\mathbf{H}_{1_y,\mathbf{B},x}\|_{\infty} = \|w_x\|_{\infty} + 1$$

By setting the noise budget accordingly, we can support poly deletions.

Communication efficient accumulator – Instantiation

Scheme	9	#Add	#Del	$ w_{\mathbf{x}} $	upmsg _{Add}	upmsg _{Del}	$ \mathscr{A} $	pp
[CP23] (M-SIS)	\approx 2 ⁹⁰	2 ³²	2 ³²	12MB	4 B	4 B	45KB	14.2MB
[CP23]+[WW23] (ℓ-Succinct M-SIS)	$\approx 2^{150}$	2 ³²	2 ³²	5.5MB	4 B	4 B	75KB	77.3MB
Our work (M-SIS)	$\approx 2^{100}$	_	2 ³²	14.72MB	_	4 B	50KB	16.7MB
Our work (ℓ-Succinct M-SIS)	$\approx 2^{162}$	_	2 ³²	9.33MB	_	4 B	81KB	171.7MB

Communication efficient accumulator – Instantiation

Scheme	9	#Add	#Del	$ w_{\mathbf{x}} $	upmsg _{Add}	upmsg _{Del}	$ \mathscr{A} $	pp
[CP23] (M-SIS)	$\approx 2^{90}$	2 ³²	2 ³²	12MB	4 B	4 B	45KB	14.2MB
[CP23]+[WW23] (ℓ -Succinct M-SIS)	$\approx 2^{150}$	2 ³²	2 ³²	5.5MB	4 B	4 B	75KB	77.3MB
Our work (M-SIS)	$\approx 2^{100}$	_	2 ³²	14.72MB	_	4 B	50KB	16.7MB
Our work (ℓ-Succinct M-SIS)	$\approx 2^{162}$	_	2 ³²	9.33MB	_	4 B	81KB	171.7MB

• Replacement-free condition: Cannot re-add x after it was deleted.

• Replacement-free condition: Cannot re-add x after it was deleted.

• Replacement-free condition: Cannot re-add x after it was deleted.

By using EvalFX, we can compute \tilde{w}_X from w_X such that $[\mathbf{A} \mid \mathbf{B} - x \otimes \mathbf{G}] \cdot \tilde{w}_X = \mathscr{A}_{t_{i+2}} - \mathbf{G}$. And $[\mathbf{A} \mid \mathbf{B} - x \otimes \mathbf{G}] \cdot \hat{w}_X = \mathscr{A}_{t_{i+2}}$.

• Replacement-free condition: Cannot re-add x after it was deleted.

By using EvalFX, we can compute \tilde{w}_x from w_x such that $[\mathbf{A} \mid \mathbf{B} - x \otimes \mathbf{G}] \cdot \tilde{w}_x = \mathscr{A}_{t_{i+2}} - \mathbf{G}$. And $[\mathbf{A} \mid \mathbf{B} - x \otimes \mathbf{G}] \cdot \hat{w}_x = \mathscr{A}_{t_{i+2}}$.

$$[\mathbf{A} \mid \mathbf{B} - \mathbf{x} \otimes \mathbf{G}] \cdot (\hat{w}_{\mathbf{x}} - \tilde{w}_{\mathbf{x}}) = \mathbf{G}$$

Note: $\hat{w}_x - \tilde{w}_x$ can be used as a **G**-trapdoor to forge membership witnesses for x.

• Replacement-free condition: Cannot re-add x after it was deleted.

By using EvalFX, we can compute \tilde{w}_x from w_x such that $[\mathbf{A} \mid \mathbf{B} - x \otimes \mathbf{G}] \cdot \tilde{w}_x = \mathscr{A}_{t_{i+2}} - \mathbf{G}$. And $[\mathbf{A} \mid \mathbf{B} - x \otimes \mathbf{G}] \cdot \hat{w}_x = \mathscr{A}_{t_{i+2}}$.

$$[\mathbf{A} \mid \mathbf{B} - \mathbf{x} \otimes \mathbf{G}] \cdot (\hat{w}_{\mathbf{x}} - \tilde{w}_{\mathbf{x}}) = \mathbf{G}$$

Note: $\hat{w}_x - \tilde{w}_x$ can be used as a **G**-trapdoor to forge membership witnesses for x.

Theorem

If the <u>replacement-free condition holds</u> and the (module) <u>Short Integer Solution problem is hard</u>, then our construction is a selectively secure communication efficient positive dynamic* accumulator.

Short Integer Solution (n, m, β **)**

Given $\bar{\mathbf{A}} \leftarrow \mathbf{s} \, R_q^{n \times m}$, find $\mathbf{v} \neq \mathbf{0}$ such that $\|\mathbf{v}\| \leq \beta$ and

- $\bar{A}v = 0$, for the homogeneous case.
- $\bar{\mathbf{A}}\mathbf{v} = \mathbf{t}$, for the inhomogeneous case w.r.t target $\mathbf{t} \neq \mathbf{0}$.

Short Integer Solution (n, m, β)

Given $\bar{\mathbf{A}} \leftarrow R_a^{n \times m}$, find $\mathbf{v} \neq \mathbf{0}$ such that $\|\mathbf{v}\| \leq \beta$ and

- $\bar{A}v = 0$, for the homogeneous case.
- $\bar{\mathbf{A}}\mathbf{v} = \mathbf{t}$, for the inhomogeneous case w.r.t target $\mathbf{t} \neq 0$.

Suppose a selective adversary A outputs a forgery (x^*, w_{x^*})

Short Integer Solution (n, m, β)

Given $\bar{\mathbf{A}} \leftarrow R_q^{n \times m}$, find $\mathbf{v} \neq \mathbf{0}$ such that $\|\mathbf{v}\| \leq \beta$ and

- $\bar{A}v = 0$, for the homogeneous case.
- $\bar{\mathbf{A}}\mathbf{v} = \mathbf{t}$, for the inhomogeneous case w.r.t target $\mathbf{t} \neq \mathbf{0}$.

Suppose a selective adversary A outputs a forgery (x^*, w_{x^*})

Case 1: x^* was never added to the accumulator.

Then $[\mathbf{A} \mid \mathbf{B} - \mathbf{x}^* \otimes \mathbf{G}] \cdot \mathbf{w}_{\mathbf{x}^*} = \mathscr{A}$.

Since w_{x^*} is *short*, it is an inhomogeneous

solution for $[\mathbf{A} \mid \mathbf{B} - x^* \otimes \mathbf{G}]$.

Short Integer Solution (n, m, β)

Given $\bar{\mathbf{A}} \leftarrow \mathbf{s} \, R_q^{n \times m}$, find $\mathbf{v} \neq \mathbf{0}$ such that $\|\mathbf{v}\| \leq \beta$ and

- $\bar{A}v = 0$, for the homogeneous case.
- $\bar{\mathbf{A}}\mathbf{v} = \mathbf{t}$, for the inhomogeneous case w.r.t target $\mathbf{t} \neq 0$.

Suppose a selective adversary A outputs a forgery (x^*, w_{x^*})

Case 1: x^* was never added to the accumulator.

Then $[\mathbf{A} \mid \mathbf{B} - x^* \otimes \mathbf{G}] \cdot w_{x^*} = \mathscr{A}$. Since w_{x^*} is *short*, it is an inhomogeneous solution for $[\mathbf{A} \mid \mathbf{B} - x^* \otimes \mathbf{G}]$. <u>Case 2: x* was added then remove from the accumulator.</u>

Then there exists $ilde{w}_{x^*}
eq w_{x^*}$ such that

$$[\mathbf{A} \mid \mathbf{B} - \mathbf{x}^* \otimes \mathbf{G}] \cdot \tilde{\mathbf{w}}_{\mathbf{x}^*} = \mathscr{A} - \mathbf{G}.$$

Short Integer Solution (n, m, β)

Given $\bar{\mathbf{A}} \leftarrow R_q^{n \times m}$, find $\mathbf{v} \neq \mathbf{0}$ such that $\|\mathbf{v}\| \leq \beta$ and

- $\bar{A}v = 0$, for the homogeneous case.
- $\bar{\mathbf{A}}\mathbf{v} = \mathbf{t}$, for the inhomogeneous case w.r.t target $\mathbf{t} \neq 0$.

Suppose a selective adversary A outputs a forgery (x^*, w_{x^*})

Case 1: x^* was never added to the accumulator.

Then $[\mathbf{A} \mid \mathbf{B} - x^* \otimes \mathbf{G}] \cdot w_{x^*} = \mathscr{A}$. Since w_{x^*} is *short*, it is an inhomogeneous solution for $[\mathbf{A} \mid \mathbf{B} - x^* \otimes \mathbf{G}]$. **Case 2:** x^* was added then remove from the accumulator.

Then there exists $\tilde{w}_{x^*} \neq w_{x^*}$ such that

$$[\mathbf{A} \mid \mathbf{B} - \mathbf{x}^* \otimes \mathbf{G}] \cdot \tilde{\mathbf{w}}_{\mathbf{v}^*} = \mathscr{A} - \mathbf{G}$$
. Therefore,

$$[\mathbf{A} \mid \mathbf{B} - \mathbf{x}^* \otimes \mathbf{G}] \cdot (\mathbf{w}_{\mathbf{x}^*} - \tilde{\mathbf{w}}_{\mathbf{x}^*}) = \mathbf{G}.$$

Hence, using $(w_{\mathsf{x}^*} - \tilde{w}_{\mathsf{x}^*})$ we can sample a short

$$\mathbf{v}
eq \mathbf{0}$$
 and $[\mathbf{A} \mid \mathbf{B} - x^* \otimes \mathbf{G}]\mathbf{v} = \mathbf{0}$

Short Integer Solution (n, m, β)

Given $\bar{\mathbf{A}} \leftarrow R_q^{n \times m}$, find $\mathbf{v} \neq \mathbf{0}$ such that $\|\mathbf{v}\| \leq \beta$ and

- $\bar{A}v = 0$, for the homogeneous case.
- $\bar{\mathbf{A}}\mathbf{v} = \mathbf{t}$, for the inhomogeneous case w.r.t target $\mathbf{t} \neq 0$.

Suppose a selective adversary A outputs a forgery (x^*, w_{x^*})

Case 1: x^* was never added to the accumulator.

Then $[\mathbf{A} \mid \mathbf{B} - x^* \otimes \mathbf{G}] \cdot w_{x^*} = \mathscr{A}$. Since w_{x^*} is *short*, it is an inhomogeneous solution for $[\mathbf{A} \mid \mathbf{B} - x^* \otimes \mathbf{G}]$.

Case 2: x^* was added then remove from the accumulator.

Then there exists $\tilde{w}_{x^*} \neq w_{x^*}$ such that

 $[\mathbf{A} \mid \mathbf{B} - \mathbf{x}^* \otimes \mathbf{G}] \cdot \tilde{\mathbf{w}}_{\mathbf{x}^*} = \mathscr{A} - \mathbf{G}$. Therefore,

 $[\mathbf{A} \mid \mathbf{B} - \mathbf{x}^* \otimes \mathbf{G}] \cdot (\mathbf{w}_{\mathbf{x}^*} - \tilde{\mathbf{w}}_{\mathbf{x}^*}) = \mathbf{G}.$

Hence, using $(w_{x^*} - \tilde{w}_{x^*})$ we can sample a short

 $\mathbf{v} \neq \mathbf{0}$ and $[\mathbf{A} \mid \mathbf{B} - x^* \otimes \mathbf{G}]\mathbf{v} = \mathbf{0}$

Note: Under the replacement-free condition, these two cases are sufficient.

• The accumulator needs to be replacement-free and is only selectively secure. Is that not undesirable?

• The accumulator needs to be replacement-free and is only selectively secure. Is that not undesirable?

Theorem

• The accumulator needs to be replacement-free and is only selectively secure. Is that not undesirable?

• The accumulator needs to be replacement-free and is only selectively secure. Is that not undesirable?

 The accumulator needs to be replacement-free and is only selectively secure. Is that not undesirable?

Note: A replacement-free selectively secure accumulator is sufficient for Anonymous Credential Revocation.

From Lattice-based zero-knowledge proofs [Lyu12 ; ENS20 ; LNP+21 ; LNP22 ; BS23], we know how to prove knowledge of ${\bf v}$ such that

$$\mathbf{C}\mathbf{v} = \mathbf{t}, \quad \|\mathbf{v}\| \leq \beta$$

From Lattice-based zero-knowledge proofs [Lyu12; ENS20; LNP+21; LNP22; BS23], we know how to prove knowledge of ${\bf v}$ such that

$$\mathbf{C}\mathbf{v} = \mathbf{t}, \quad \|\mathbf{v}\| \leq \beta$$

For our construction, we need to prove knowledge of (x, w_x) such that

$$[\mathbf{A} \mid \mathbf{B} - \mathbf{x} \otimes \mathbf{G}] \cdot \mathbf{w}_{\mathbf{x}} = \mathscr{A}, \quad \|\mathbf{w}_{\mathbf{x}}\| \le \beta'$$
 (1)

Replacement-free Selectively Secure Accumulator in ACs revocation

From Lattice-based zero-knowledge proofs [Lyu12; ENS20; LNP+21; LNP22; BS23], we know how to prove knowledge of \mathbf{v} such that

$$\mathbf{C}\mathbf{v} = \mathbf{t}, \quad \|\mathbf{v}\| \leq \beta$$

For our construction, we need to prove knowledge of (x, w_x) such that

$$[\mathbf{A} \mid \mathbf{B} - \mathbf{x} \otimes \mathbf{G}] \cdot \mathbf{w}_{\mathbf{x}} = \mathscr{A}, \quad \|\mathbf{w}_{\mathbf{x}}\| \le \beta'$$
 (1)

Replacement-free Selectively Secure Accumulator in ACs revocation

From Lattice-based zero-knowledge proofs [Lyu12; ENS20; LNP+21; LNP22; BS23], we know how to prove knowledge of ${\bf v}$ such that

$$\mathbf{C}\mathbf{v} = \mathbf{t}, \quad \|\mathbf{v}\| \leq \beta$$

For our construction, we need to prove knowledge of (x, w_x) such that

$$[\mathbf{A} \mid \mathbf{B} - \mathbf{x} \otimes \mathbf{G}] \cdot \mathbf{w}_{\mathbf{x}} = \mathscr{A}, \quad \|\mathbf{w}_{\mathbf{x}}\| \le \beta'$$
 (1)

How can we handle x?

- Compute a commitment Com(x; r) and produce a proof $\pi_{Com} = (\mathbf{w}, c, z)$.
- From z, we can extract $z_x = y_x + c \cdot x$ such that

$$[c\mathbf{A} \mid c\mathbf{B} - \mathbf{z}_{\mathsf{x}} \otimes \mathbf{G}] \cdot w_{\mathsf{x}} = c \underbrace{[\mathbf{A} \mid \mathbf{B} - \mathbf{x} \otimes \mathbf{G}] \cdot w_{\mathsf{x}}}_{\mathcal{A}} + [\mathbf{0} \mid -\mathbf{y}_{\mathsf{x}} \otimes \mathbf{G}] \cdot w_{\mathsf{x}}$$

Thank You!

https://ia.cr/2025/1099

Reference I

- [ABB10] S. Agrawal, D. Boneh, and X. Boyen. "Efficient Lattice (H)IBE in the Standard Model". In:

 Advances in Cryptology EUROCRYPT 2010, 29th Annual International Conference on the Theory

 and Applications of Cryptographic Techniques, Monaco / French Riviera, May 30 June 3, 2010.

 Proceedings. Ed. by H. Gilbert. Vol. 6110. Lecture Notes in Computer Science. Springer, 2010,
 pp. 553–572.
- [ATS+09] M. H. Au et al. "Dynamic Universal Accumulators for DDH Groups and Their Application to Attribute-Based Anonymous Credential Systems". In: Topics in Cryptology - CT-RSA 2009, The Cryptographers' Track at the RSA Conference 2009, San Francisco, CA, USA, April 20-24, 2009. Proceedings. Ed. by M. Fischlin. Vol. 5473. Lecture Notes in Computer Science. Springer, 2009, pp. 295–308.
- [BBC+24] C. Baum et al. Cryptographers' Feedback on the EU Digital Identity's ARF.

 https://github.com/user-attachments/files/15904122/cryptographers-feedback.pdf.2024.

Reference II

- [BCD+17] F. Baldimtsi et al. "Accumulators with Applications to Anonymity-Preserving Revocation". In: 2017 IEEE European Symposium on Security and Privacy, EuroS&P 2017, Paris, France, April 26-28, 2017. IEEE, 2017, pp. 301–315.
- [BGG+14] D. Boneh et al. "Fully Key-Homomorphic Encryption, Arithmetic Circuit ABE and Compact Garbled Circuits". In: Advances in Cryptology EUROCRYPT 2014 33rd Annual International Conference on the Theory and Applications of Cryptographic Techniques, Copenhagen, Denmark, May 11-15, 2014. Proceedings. Ed. by P. Q. Nguyen and E. Oswald. Vol. 8441. Lecture Notes in Computer Science. Springer, 2014, pp. 533–556.
- [BS23] W. Beullens and G. Seiler. "LaBRADOR: Compact Proofs for R1CS from Module-SIS". In: *CRYPTO (5)*. Vol. 14085. Lecture Notes in Computer Science. Springer, 2023, pp. 518–548.

Reference III

- [CKS09] J. Camenisch, M. Kohlweiss, and C. Soriente. "An Accumulator Based on Bilinear Maps and Efficient Revocation for Anonymous Credentials". In: Public Key Cryptography PKC 2009, 12th International Conference on Practice and Theory in Public Key Cryptography, Irvine, CA, USA, March 18-20, 2009. Proceedings. Ed. by S. Jarecki and G. Tsudik. Vol. 5443. Lecture Notes in Computer Science. Springer, 2009, pp. 481–500.
- [CLO2 a] J. Camenisch and A. Lysyanskaya. "A Signature Scheme with Efficient Protocols". In: SCN. Vol. 2576. Lecture Notes in Computer Science. Springer, 2002, pp. 268–289.
- [CLO2 b] J. Camenisch and A. Lysyanskaya. "Dynamic Accumulators and Application to Efficient Revocation of Anonymous Credentials". In: Advances in Cryptology CRYPTO 2002, 22nd Annual International Cryptology Conference, Santa Barbara, California, USA, August 18-22, 2002, Proceedings. Ed. by M. Yung. Vol. 2442. Lecture Notes in Computer Science. Springer, 2002, pp. 61–76.

Reference IV

- [CP23] L. de Castro and C. Peikert. "Functional Commitments for All Functions, with Transparent Setup and from SIS". In: Advances in Cryptology EUROCRYPT 2023: 42nd Annual International Conference on the Theory and Applications of Cryptographic Techniques, Lyon, France, April 23-27, 2023, Proceedings, Part III. Lyon, France: Springer-Verlag, 2023, pp. 287–320. ISBN: 978-3-031-30619-8.
- [DHS15] D. Derler, C. Hanser, and D. Slamanig. "Revisiting Cryptographic Accumulators, Additional Properties and Relations to Other Primitives". In: *Topics in Cryptology CT-RSA 2015*. Ed. by K. Nyberg. Cham: Springer International Publishing, 2015, pp. 127–144. ISBN: 978-3-319-16715-2.
- [ENS20] M. F. Esgin, N. K. Nguyen, and G. Seiler. "Practical Exact Proofs from Lattices: New Techniques to Exploit Fully-Splitting Rings". In: Advances in Cryptology ASIACRYPT 2020-26th International Conference on the Theory and Application of Cryptology and Information Security, Daejeon, South Korea, December 7-11, 2020, Proceedings, Part II. Ed. by S. Moriai and H. Wang. Vol. 12492. Lecture Notes in Computer Science. Springer, 2020, pp. 259–288.

Reference V

- [GSW13] C. Gentry, A. Sahai, and B. Waters. "Homomorphic Encryption from Learning with Errors: Conceptually-Simpler, Asymptotically-Faster, Attribute-Based". In: Advances in Cryptology—CRYPTO 2013. Ed. by R. Canetti and J. A. Garay. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 75–92. ISBN: 978-3-642-40041-4.
- [JML24] S. Jaques, H. Montgomery, and M. Lodder. "ALLOSAUR: Accumulator with Low-Latency Oblivious Sublinear Anonymous credential Updates with Revocations". In: Proceedings of the 19th ACM Asia Conference on Computer and Communications Security, ASIA CCS 2024, Singapore, July 1-5, 2024. Ed. by J. Zhou et al. ACM, 2024.
- [KB21] I. Karantaidou and F. Baldimtsi. "Efficient Constructions of Pairing Based Accumulators". In: 34th IEEE Computer Security Foundations Symposium, CSF 2021, Dubrovnik, Croatia, June 21-25, 2021. IEEE, 2021, pp. 1–16.

Reference VI

- [KL24] V. Y. Kemmoe and A. Lysyanskaya. "RSA-Based Dynamic Accumulator without Hashing into Primes". In: Proceedings of the 2024 on ACM SIGSAC Conference on Computer and Communications Security, CCS 2024, Salt Lake City, UT, USA, October 14-18, 2024. Ed. by B. Luo et al. ACM, 2024, pp. 4271–4285.
- [LLN+23] B. Libert et al. "Zero-Knowledge Arguments for Lattice-Based Accumulators: Logarithmic-Size Ring Signatures and Group Signatures Without Trapdoors". In: J. Cryptol. 36.3 (2023), p. 23.
- [LLX07] J. Li, N. Li, and R. Xue. "Universal Accumulators with Efficient Nonmembership Proofs". In: Applied Cryptography and Network Security, 5th International Conference, ACNS 2007, Zhuhai, China, June 5-8, 2007, Proceedings. Ed. by J. Katz and M. Yung. Vol. 4521. Lecture Notes in Computer Science. Springer, 2007, pp. 253–269.
- [LNP+21] V. Lyubashevsky et al. "Shorter Lattice-Based Group Signatures via "Almost Free" Encryption and Other Optimizations". In: *ASIACRYPT* (4). Vol. 13093. Lecture Notes in Computer Science. Springer, 2021, pp. 218–248.

Reference VII

- [LNP22] V. Lyubashevsky, N. K. Nguyen, and M. Plançon. "Lattice-Based Zero-Knowledge Proofs and Applications: Shorter, Simpler, and More General". In: Advances in Cryptology CRYPTO 2022: 42nd Annual International Cryptology Conference, CRYPTO 2022, Santa Barbara, CA, USA, August 15–18, 2022, Proceedings, Part II. Santa Barbara, CA, USA: Springer-Verlag, 2022, pp. 71–101. ISBN: 978-3-031-15978-7.
- [Lyu12] V. Lyubashevsky. "Lattice Signatures without Trapdoors". In: Advances in Cryptology EUROCRYPT 2012 31st Annual International Conference on the Theory and Applications of Cryptographic Techniques, Cambridge, UK, April 15-19, 2012. Proceedings. Ed. by D. Pointcheval and T. Johansson. Vol. 7237. Lecture Notes in Computer Science. Springer, 2012, pp. 738–755.
- [MP12] D. Micciancio and C. Peikert. "Trapdoors for lattices: simpler, tighter, faster, smaller". In: Proceedings of the 31st Annual International Conference on Theory and Applications of Cryptographic Techniques. EUROCRYPT'12. Cambridge, UK: Springer-Verlag, 2012, pp. 700–718. ISBN: 9783642290107.

Reference VIII

- [Ngu05] L. Nguyen. "Accumulators from Bilinear Pairings and Applications". In: Topics in Cryptology CT-RSA 2005, The Cryptographers' Track at the RSA Conference 2005, San Francisco, CA, USA, February 14-18, 2005, Proceedings. Ed. by A. Menezes. Vol. 3376. Lecture Notes in Computer Science. Springer, 2005, pp. 275–292.
- [PST+13] C. Papamanthou et al. "Streaming Authenticated Data Structures". In: Advances in Cryptology - EUROCRYPT 2013, 32nd Annual International Conference on the Theory and Applications of Cryptographic Techniques, Athens, Greece, May 26-30, 2013. Proceedings. Ed. by T. Johansson and P. Q. Nguyen. Vol. 7881. Lecture Notes in Computer Science. Springer, 2013, pp. 353–370.
- [WW23] H. Wee and D. J. Wu. "Lattice-Based Functional Commitments: Fast Verification and Cryptanalysis". In: *Advances in Cryptology ASIACRYPT 2023*. Ed. by J. Guo and R. Steinfeld. Singapore: Springer Nature Singapore, 2023, pp. 201–235. ISBN: 978-981-99-8733-7.

Reference IX

- [YAY+18] Z. Yu et al. "Lattice-Based Universal Accumulator with Nonmembership Arguments". In: Information Security and Privacy 23rd Australasian Conference, ACISP 2018, Wollongong, NSW, Australia, July 11-13, 2018, Proceedings. Ed. by W. Susilo and G. Yang. Vol. 10946. Lecture Notes in Computer Science. Springer, 2018, pp. 502–519.
- [ZYH24] Y. Zhao, S. Yang, and X. Huang. "Lattice-based dynamic universal accumulator: Design and application". In: *Comput. Stand. Interfaces* 89 (2024), p. 103807.